Fractions
Les fractions peuvent être développées et mises en facteur commun en utilisant
les fonctions EXPAND et FACTOR dans le menu ALG (‚×). Par exemple :
EXPAND('(1+X)^3/((X-1)*(X+3))') = '(X^3+3*X^2+3*X+1)/(X^2+2*X-3)'
EXPAND('(X^2)*(X+Y)/(2*X-X^2)^2)') = '(X+Y)/(X^2-4*X+4)'
EXPAND('X*(X+Y)/(X^2-1)') = '(X^2+Y*X)/(X^2-1)'
EXPAND('4+2*(X-1)+3/((X-2)*(X+3))-5/X^2') =
'(2*X^5+4*X^4-10*X^3-14*X^2-5*X+30)/(X^4+X^3-6*X^2)'
FACTOR('(3*X^3-2*X^2)/(X^2-5*X+6)') = 'X^2*(3*X-2)/((X-2)*(X-3))'
FACTOR('(X^3-9*X)/(X^2-5*X+6)' ) = 'X*(X+3)/(X-2)'
FACTOR('(X^2-1)/(X^3*Y-Y)') = '(X+1)/((X^2+X+1)*Y)'
Fonction SIMP2
Les fonctions SIMP2 et PROPFRAC sont utilisées respectivement pour simplifier
une fraction et pour obtenir une fraction correcte. La fonction SIMP2 prend pour
argument deux nombres ou polynômes représentant le numérateur et le
dénominateur d'une fraction rationnelle et calcule le numérateur et le
dénominateur simplifiés. Exemple :
SIMP2('X^3-1','X^2-4*X+3') = { 'X^2+X+1','X-3'}.
Fonction PROPFRAC
La fonction PROPFRAC convertit une fraction rationnelle en fraction "correcte",
c'est-à-dire en un entier additionné à une fraction, si une telle décomposition est
possible. Exemple :
PROPFRAC('5/4') = '1+1/4'
PROPFRAC('(x^2+1)/x^2') = '1+1/x^2'
Fonction PARTFRAC
La fonction PARTFRAC décompose une fraction rationnelle en fractions partielles
qui produisent la fraction originale. Par exemple :
Page. 5-26