(3)
Pour une charge se déplaçant horizontalement
Supposez une table de support entraînée par un moteur comme le montre la figure 7.7. Si la vitesse
de la table est υ (m/s) lorsque la vitesse du moteur est N
de rotation est égale à 60·υ / (2π·N
rotation est calculé comme suit :
60
υ
•
2
J
(
)
(
W
W
)
=
+
•
0
2
N
π
•
M
[ 2 ] Calcul du temps d'accélération
La figure 7.9 indique un modèle de charge général. Supposez qu'un moteur entraîne une charge via
une boîte de réduction avec l'efficacité η
N
(t/min) est calculé avec l'équation suivante :
M
J
J
η
2
(
N
+
π
1
2
•
G
t
=
•
ACC
60
η
−
τ
τ
M
L
G
où,
J
: Moment d'inertie de l'arbre du moteur (kg·m
1
J
: Moment d'inertie de l'arbre du moteur converti à l'arbre du moteur (kg·m
2
: Couple de sortie du moteur minimum en mode d'entraînement (N·m)
τ
M
: Couple de charge maximum converti à l'arbre du moteur (N·m)
τ
L
: Efficacité de la boîte de réduction.
η
G
Comme l'équation ci-dessus l'indique, le moment d'inertie équivalent devient (J
en compte l'efficacité de la boîte de réduction.
Figure 7.9 Modèle de charge incluant la boîte de réduction
[ 3 ] Calcul du temps de décélération
Dans le système de charge indiqué dans la figure 7.9, le temps nécessaire pour arrêter le moteur
tournant à la vitesse N
(t/min) est calculé par l'équation suivante :
M
J
J
η
2
0 (
+
π
−
•
1
2
•
G
t
=
•
DEC
60
τ
τ η
−
M
L
•
G
où,
J
: Moment d'inertie de l'arbre du moteur (kg·m
1
J
: Moment d'inertie de l'arbre du moteur converti à l'arbre du moteur (kg·m
2
: Couple de sortie minimum du moteur en mode de décélération (N·m)
τ
M
: Couple de charge maximum converti à l'arbre du moteur (N·m)
τ
L
: Efficacité de la boîte de réduction
η
G
Dans l'équation ci-dessus, le couple de sortie τ
positif. Ainsi, le temps de décélération est raccourci.
7.1 Sélection des moteurs et des variateurs de vitesse
) m. Le moment d'inertie de la table et de la charge à l'axe de
M
2
(
kg
m
)
•
. Le temps requis pour accélèrer cette charge à la vitesse
G
) 0
−
M
(
) s
)
N
M
(
) s
est généralement négatif, et le couple de charge τ
M
9
(t/min), une distance équivalente de l'axe
M
2
)
2
)
(7.9)
(7.10)
2
)
+J
/η
) en prenant
1
2
G
(7.11)
2
)
L