zeros()
Catalogue >
Si toutes les expressions sont polynomiales et si vous NE spécifiez
PAS de condition initiale,
utilise la méthode d'élimination
zeros()
lexicale Gröbner/Buchberger pour tenter de trouver tous les zéros
réels.
Par exemple, si vous avez un cercle de rayon r centré à l'origine et un
autre cercle de rayon r centré, au point où le premier cercle coupe
l'axe des x positifs. Utilisez
pour trouver les intersections.
zeros()
Comme l'illustre r dans l'exemple ci-contre, des expressions
polynomiales simultanées peuvent avoir des variables
supplémentaires sans valeur assignée, mais représenter des valeurs
auxquelles on peut affecter par la suite des valeurs numériques.
Chaque ligne de la matrice résultante représente un n_uplet, l'ordre
des composants étant identique à celui de la liste VarOuInit. Pour
extraire une ligne, indexez la matrice par [ligne].
Extraction ligne 2 :
Vous pouvez également utiliser des inconnues qui n'apparaissent pas
dans les expressions. Par exemple, vous pouvez utiliser z comme
inconnue pour développer l'exemple précédent et avoir deux cylindres
parallèles sécants de rayon r. La solution des cylindres montre
comment des groupes de zéros peuvent contenir des constantes
arbitraires de type ck, où k est un suffixe entier compris entre 1 et
255.
Pour les systèmes d'équations polynomiaux, le temps de calcul et
l'utilisation de la mémoire peuvent considérablement varier en
fonction de l'ordre dans lequel les inconnues sont spécifiées. Si votre
choix initial ne vous satisfait pas pour ces raisons, vous pouvez
modifier l'ordre des variables dans les expressions et/ou la liste
VarOuInit.
Si vous choisissez de ne pas spécifier de condition et s'il l'une des
expressions n'est pas polynomiale dans l'une des variables, mais que
toutes les expressions sont linéaires par rapport à toutes les
inconnues,
utilise l'élimination gaussienne pour tenter de
zeros()
trouver tous les zéros réels.
Si un système d'équations n'est pas polynomial dans toutes ses
variables ni linéaire par rapport à ses inconnues,
cherche au
zeros()
moins un zéro en utilisant une méthode itérative approchée. Pour
cela, le nombre d'inconnues doit être égal au nombre d'expressions et
toutes les autres variables contenues dans les expressions doivent
pouvoir être évaluées à des nombres.
Chaque inconnue commence à sa valeur supposée, si elle existe ;
sinon, la valeur de départ est 0.0.
Utilisez des valeurs initiales pour rechercher des zéros
supplémentaires, un par un. Pour assurer une convergence correcte,
une valeur initiale doit être relativement proche d'un zéro.
Guide de référence TI-Nspire™ CAS
141