Technical Manual Absolute Single/Multiturn Profibus Encoders PROFIBUS‐DP basics This description provides information concerning the implementation of the PROFIBUS‐DP transmission protocol in the slave mode in our devices. It should be noted that the extent of the functions described might be limited according to the device or application. With protocol conversions in particular, as a rule fewer functions are used! The profile required The link between the decentralized process operation and the central control via the communication system takes place in the lowest hierarchy level on the filed or process bus. At this level, the main requirements are a simple protocol operation and short data transmission times for the communication. This ensures the fastest system reaction time to the dynamic states of the peripherals. In addition to the classic data exchange, the acyclic transmission of parameter, diagnostic and configuration data must be possible, without radically impeding the real‐time capability of the bus. This is the only way to guarantee the achievement of good diagnostics and safe operation. Characteristics The main task of PROFIBUS‐DP is the cyclic transmission of the process data from the control system to the peripheral equipment and vice versa. The access procedure uses the Master‐Slave principle. Here in the polling operation a Master communicates with its assigned slave devices one after the other on the bus. A data exchange is initiated by a request telegram and ended by an acknowledgement telegram from the Slave concerned. So, each Slave only becomes active after a call from the Master. This avoids a simultaneous bus access. The hybrid access procedure of PROFIBUS allows a combined operation of several bus masters and even a mixed operation of PROFIBUS‐DP and PROFIBUS‐FMS within a bus section. However the pre‐requisition for this is the correct configuration of the bus system and the unambiguous assignment of the Slave devices to the Masters. PROFIBUS‐ DP distinguishes two types of Master. The Class 1 Master carries out the cyclic transmission of the operating data and supplies the user data. The Class 1 Master can be addressed by a Class 2 Master using certain functions. Direct access to the Slaves is not permitted. The functions are limited to support services such as reading the diagnostic information of the slaves. A Class 2 Master is thus also understood as a programming or diagnostic device. Protective functions ...
Technical Manual Absolute Single/Multiturn Profibus Encoders ‐ ‐ Before a PROFIBUS‐DP system can be started up, unique bus addresses must be assigned to all connected stations, including the Master system. This is the only way to ensure unambiguous addressing on the bus. The station addresses should be assigned via the bus at first. The physical system settings are made using the parameter set of the Master. In addition to the bus address of the Master, this set includes, for example, the baud rate, the time‐out delays and the number of repetitions of the transmission. Along with the Master parameter set, a Slave data set must be saved for each Slave to be activated. A data set contains the parameter assignment and configuration data of the Slave and the address indicator for the logical storage of the I/O data. If the parameter sets are present, then either at the request of the user or automatically the Master system begins to start the Slaves up, one after the other. The first so‐called diagnostic cycles are able to show, which slave is present on the bus. Only those Slaves, which sent a correct feedback during the diagnostic cycle, will subsequently be parameterized in the parameter cycles with the corresponding data stored in the Master. If this has been correctly carried out, then configuration cycles follow, during which a comparison is made between the required configuration data stored in the Master and the actual configuration data of the Slave. After the last diagnostic cycle, each Slave for which no error was detected during the comparison is ready for operation. Each of these Slaves is then integrated automatically by the Master in the operating data transfer. For diagnostic purposes, the Master provides a diagnostic buffer for each Slave, which can be read by the user for other purposes. To simplify the diagnostics, a general diagnostic field is kept simultaneously, which shows bitwise whether a Slave has diagnostic data ready or not. Installation instructions for RS‐485 All devices are connected within a bus structure (line). Up to 32 stations (Master or Slaves) can be linked together in one segment. The bus is terminated at the beginning and at the end of each segment by an active bus termination (termination resistors). To ensure disturbance‐free operation both bus terminations must always ...
Technical Manual Absolute Single/Multiturn Profibus Encoders Effective grounding and equipotential bonding are very important for the interference immunity of PROFIBUS networks. Grounding and bonding is thus primarily to ensure correct functioning of PROFIBUS, and not for safety reasons. Proper grounding of the cable shield ensures that electrostatic interference is reduced, so minimizing pickup. Equipotential bonding ensures that the ground or earth potential is the same across the network. This, in turn, prevents ground currents flowing through the PROFIBUS cable shield. The following information provides general guidance for the installation of grounding and equipotential bonding. At the PROFIBUS station Connect the PROFIBUS cable shield to the equipotential bonding at every PROFIBUS station. The PROFIBUS connector, where used, provides connection for the cable shield. However, this requires a properly made the shield connection in the connector. ...
Technical Manual Absolute Single/Multiturn Profibus Encoders PNO‐Ident‐Number The Sendix Absolute Singleturn/Multiturn Encoder has the PNO‐Ident‐Number 5868 (Hex). This number is registered at the PNO (Profibus User Organization) as an unique identification. The according GSD‐Files are named as follows: • Multiturn Series 7068,7088 KUEB7068.GSD • Singleturn Series 7058,7078 KUEB7058.GSD Start phase of the encoder on the PROFIBUS When the encoder starts up it is in the ‘Baud‐Search’ state. Once the baud rate has been recognized, it switches to the WAIT_PRM state and waits for the parameter data from the DP‐Master. The parameterisation occurs automatically when the DP‐Master starts up. The following parameters are transmitted to the encoder: count direction and the measuring length in steps (for more details, see the Encoder Profile from the PNO). When the correct parameter data have been successfully transferred, the encoder switches to the WAIT_CFG state. The PROFIBUS Master then sends a configuration byte to determine the number of inputs/outputs. If the configuration byte is correct, the encoder switches to the state DATA_EXCHANGE. Configuration and Parameterisation The parameterisation, i.e. the transfer of the parameters for count direction, encoder resolution etc., normally occurs within the configuration programme for the PROFIBUS Master used. To do this, the type file or GSD (device file) should be copied to the respective directory for type or GSD files. With some programmes such as COM PROFIBUS or STEP7 Manager, an update of the internal device list (hardware catalogue) must be carried out ...
Technical Manual Absolute Single/Multiturn Profibus Encoders ‐ ‐ This profile describes a manufacturer‐independent and mandatory determination of the interface for encoders. It is defined in the protocol, which Profibus functions are used as well as how they are to be used. This standard permits an open manufacturer‐independent bus system. The device profile is divided into two object classes: • Class C1 describes all the basic functions, which the encoder should contain. • Class C2 contains a number of extended functions, which must either be supported by encoders of this class (Mandatory) or which are optional. Class C2 devices thus contain all the C1 and C2 mandatory functions, as well as additional manufacturer‐ dependent optional functions. An address area is also defined in the profile, which can be reserved for a manufacturer’s own proprietary special functions. Configuration ...
Technical Manual Absolute Single/Multiturn Profibus Encoders Class 2 32‐Bit resolution, Input/Output consistent: The encoder uses 2 input words and 2 output words, which are each consistently transmitted over the bus. Class 2 32‐Bit resolution, Input consistent: The encoder uses 2 input words, which are each consistently transmitted over the bus. Class 1 16‐Bit resolution, Input/Output consistent: The encoder uses 1 input word and 1 output word, which are each consistently transmitted over the bus. Class 1 16‐Bit resolution, Input consistent: The encoder uses 1 input word, which is consistently transmitted over the bus. Combination with: Class 2 32‐Bit resolution, Input consistent Speed in (units/s) or Class 2 16‐Bit resolution, Input consistent Speed in (rpm) The encoder uses max. 2 input words, which are each consistently transmitted over the bus. Default setting Scaling on, 25 Bit total resolution Class 2 32‐Bit resolution MUR=13Bit,TMR=25Bit: Preset setting In the mode ‘Class 2’ the encoder can be adjusted over the PROFIBUS to any position value in the value range of 27 Bit or 15 Bit. This occurs by setting the most significant bit (MSB) of the output data (2^31 for configuration Class 2 ‐ 32 Bit or 2^15 for configuration Class 2 ‐ 16 Bit). The Preset Value that is transmitted in the data bytes 0 ‐ 3 is accepted as the position value with the rising edge ...
Technical Manual Absolute Single/Multiturn Profibus Encoders Extended Diagnostics 1. Device profile for encoders Function Octet N°. Data Type Name Data_Exchange 1‐4 Unsigned 32 Position Value (input) Data_Exchange 1‐4 ...
Technical Manual Absolute Single/Multiturn Profibus Encoders The Service Access Point “ SAP 55 Set_Slave_Address ” can only be carried out with a Class2 Master in the Profibus startup sequence. Default settings after a Power‐on is the address 125 (0x7D) for SSA_Support . Only valid addresses will be stored in a non‐volatile memory and are active by now. The Node number 0 is reserved and must not be used by any node. The resulting node numbers lie in the range 1...7Dh hexadecimal (1...125 decimal). Supply voltage (Power supply) ...
Technical Manual Absolute Single/Multiturn Profibus Encoders Profibus lines A and B Connect the Profibus Input‐lines to lead 4 and 5 (BUS_A) and ( BUS_B) and for outgoing lines to lead 8 and 9. Type: Series ‐Nr. SIG. 0V +V BUS ‐A BUS‐B BUS_ BUS_ BUS ‐A BUS‐B GND VDC Lead 1 2 4 5 nr. ...
Page 13
Technical Manual Absolute Single/Multiturn Profibus Encoders In order to carry out a general parameterisation of the device, it is necessary first to select a module from the GSD file (KUEB7068.GSD). Example: With the parameter telegram (except for the 25‐Bit configuration) the following can be defined: Code Sequence (Octet 9, Bit 0) o 0 = clockwise o 1 = counter clockwise ...
Technical Manual Absolute Single/Multiturn Profibus Encoders With Standard Scaling, scaling will be done as follows: o With MUR and TMR o One revolution is equivalent exactly to MUR = TMR values Position = ((Position / Singleturn‐resolution) * MUR) % TMR scaled unscaled With Alternative Scaling, scaling will be done as follows: o With NDR and TMR o NDR revolutions are equivalent exactly to the TMR values Position = ((Position / (NDR * Singleturn‐resolution)) * TMR) % TMR scaled unscaled 1. Code sequence CW Possible settings: Increasing clockwise (0) (CW) Increasing counter‐clockwise (1) (CCW) ...
Page 15
Technical Manual Absolute Single/Multiturn Profibus Encoders 3. Scaling function control on When scaling is turned on – Position depends on the values MUR and TMR. 4. Scaling type MUR+TMR Scaling type (MUR + TMR) ...
Technical Manual Absolute Single/Multiturn Profibus Encoders 6. Value for Total Resolution Example: Value for total resolution 36000 Position range: 0…36000 Revolutions 10 If the scaling values (TMR/MUR) cannot be divided without a rest there will be an error at the limits of the position values ( value < 0 and < maximum position). This can be avoid with a multiple value of MUR to TMR. On delivery the following parameters have been factory set. ...
Page 19
Notice technique Codeurs absolus monotour/multitours Profibus Sommaire GÉNÉRALITÉS ..................4 PROFIBUS-DP ................................ 4 ASES DE .................................... 4 XIGENCES ................................. 4 ARACTÉRISTIQUES ..............................4 ONCTIONS DE PROTECTION MISE EN SERVICE ..................5 INFORMATIONS GÉNÉRALES SUR LE CÂBLAGE........5 ’ RS-485..........................5 NFORMATIONS D INSTALLATION POUR MISE À...
Notice technique Codeurs absolus monotour/multitours Profibus é é é é é é Bases de PROFIBUS-DP Cette notice documente l’implémentation du protocole de transmission PROFIBUS-DP en mode esclave sur nos appareils. Il faut noter que l’étendue des fonctionnalités décrites peut être limitée selon les appareils ou les cas d’utilisation.
Notice technique Codeurs absolus monotour/multitours Profibus Avant de pouvoir mettre un système PROFIBUS-DP en service, tous les appareils raccordés, y compris le système maître, doivent recevoir des adresses de bus univoques. Ce n’est qu’ainsi que l'adressage univoque dans le bus pourra avoir lieu.
Notice technique Codeurs absolus monotour/multitours Profibus à é à é Une mise à la terre et une liaison équipotentielle efficaces sont essentielles à la protection des réseaux PROFIBUS contre les interférences. Le mise à la terre et la liaison équipotentielle servent principalement à assurer le bon fonctionnement de PROFIBUS et pas à...
Notice technique Codeurs absolus monotour/multitours Profibus é é Numéro d’identifiant PNO Le codeur absolu monotour/multitours Sendix porte le numéro d’identifiant PNO 5868 (Hex). Ce numéro est déposé auprès de la PNO (Organisation des Utilisateurs de Profibus) en tant qu’identifiant unique. Les fichiers GSD correspondants portent les noms suivants : Série multitours 7068,7088 KUEB7068.GSD...
Notice technique Codeurs absolus monotour/multitours Profibus ’ ’ Ce profil fournit une définition de l’interface pour les codeurs indépendante des constructeurs et obligatoire. Ce profil définit les fonctions Profibus à utiliser, ainsi que la manière de les utiliser. Cette norme permet la réalisation d’un système de bus ouvert et indépendant des constructeurs.
Notice technique Codeurs absolus monotour/multitours Profibus Class 2 32-Bit resolution, Input/Output consistent (Classe 2 résolution 32 bits, Entrée/Sortie, cohérent) : le codeur utilise 2 mots d’entrée et 2 mots de sortie transmis de manière cohérente via le bus. Class 2 32-Bit resolution, Input consistent (Classe 2 résolution 32 bits, Entrée, cohérent) : le codeur utilise 2 mots d’entrée transmis de manière cohérente via le bus.
Notice technique Codeurs absolus monotour/multitours Profibus Limites de vitesse : Codeur monotour : 600 trs/min la valeur FFFFh est émise pour des vitesses supérieures. Codeur multitours : 12000 trs/min la valeur FFFFh est émise pour des vitesses supérieures Diagnostic étendu 1.
Notice technique Codeurs absolus monotour/multitours Profibus – é ’ ’ – é ’ ’ Le Service Access Point (point d’accès service) « SAP 55 Set_Slave_Address » ne peut être utilisé que par un maître de classe 2 lors de la séquence de démarrage Profibus. Réglage par défaut après la mise sous tension : adressse 125 (0x7D) pour SSA_Support.
Notice technique Codeurs absolus monotour/multitours Profibus Profibus lignes Relier les lignes d’entrée Profibus aux fils 4 et 5 (BUS_A) et ( BUS_B) et les lignes de sortie aux fils 8 et 9. Type: N° de série SIG. BUS -A BUS-B BUS_ BUS_ BUS -A...
Page 29
Notice technique Codeurs absolus monotour/multitours Profibus é é Pour réaliser un paramétrage général de l’appareil, sélectionner en premier lieu un module dans le ficher GSD (KUEB7068.GSD). Exemple : Le télégramme de paramétrage permet de définir les données suivantes (sauf pour la configuration 25 bits) : Séquence de code (octet 9, bit 0) o 0 = sens horaire o 1 = sens antihoraire...
Notice technique Codeurs absolus monotour/multitours Profibus Pour une échelle standard, procéder comme suit : o Avec MUR et TMR o Un tour correspond exactement à MUR = valeurs TMR Position = ((Position / Résolution monotour) * MUR) % TMR échelle sans échelle Pour une échelle alternative, procéder comme suit : o Avec NDR et TMR...
Notice technique Codeurs absolus monotour/multitours Profibus 3. Scaling function control (commande de la fonction d’échelle) activée Echelle activée – la position dépend des valeurs de MUR et TMR. 4. Scaling type (type d’échelle) MUR+TMR Type d’échelle (MUR + TMR) 5. Valeur de résolution par tour Exemple : 3600 pas par tour 15 de 16 R.000.000...
Notice technique Codeurs absolus monotour/multitours Profibus 6. Valeur de résolution totale Exemple : Valeur de résolution totale 36000 Plage de positions : 0…36000 Tours : 10 Si la division des valeurs d’échelle (TMR/MUR) ne produit pas un nombre entier, il y aura une erreur aux limites des valeurs de position (valeur <...