Pertes De Charges - Endress+Hauser Promass 63 Instructions De Montage Et De Mise En Service

Débitmètre massique
Table des Matières

Publicité

11 Caractéristiques techniques
132

Pertes de charges

La perte de charge dépend des propriétés du fluide et de son débit. Pour les liquides
on pourra utiliser par approximation les formules suivantes :
4 m
=
Nombre de
Re
π
⋅ ⋅ ⋅
d
Reynolds
Re ≥ 2300 *
∆p
=
υ
K
∆p
=
K
1
Re < 2300
∆p = perte de charge [mbar]
υ = viscosité cinématique [m
m = débit massique [kg/s]
* Pour les gaz, il convient d'utiliser la formule valable pour Re ≥ 2300 pour le calcul de la perte de charge.
Diamètre
1,10 ⋅ 10
DN 1
Promass A
1,80 ⋅ 10
DN 2
3,50 ⋅ 10
DN 4
Promass A
1,40 ⋅ 10
DN 2
Haute
3,00 ⋅ 10
DN 4
pression
8,55 ⋅ 10
DN 8
11,38 ⋅ 10
DN 15
17,07 ⋅ 10
DN 15 *
17,07 ⋅ 10
Promass I
DN 25
25,60 ⋅ 10
DN 25 *
25,60 ⋅ 10
DN 40
35,62 ⋅ 10
DN 40 *
35,62 ⋅ 10
DN 50
5,53 ⋅ 10
DN 8
8,55 ⋅ 10
DN 15
Promass
11,38 ⋅ 10
DN 25
M
17,07 ⋅ 10
DN 40
25,60 ⋅ 10
DN 50
38,46 ⋅ 10
DN 80
Promass
4,93 ⋅ 10
DN 8
M
7,75 ⋅ 10
DN 15
Haute
10,20 ⋅ 10
DN 25
pression.
5,35 ⋅ 10
DN 8
8,30 ⋅ 10
DN 15
Promass F
12,00 ⋅ 10
DN 25
17,60 ⋅ 10
DN 40
26,00 ⋅ 10
DN 50
Indications de pertes de charge y compris passage tube de mesure/conduite.
Des exemples de diagrammes de perte de charge pour l'eau se trouvent à la page suivante.
* DN 15, 25, 40 "FB" = Promass I avec continuité de diamètre interne
Promass A / I
&
υ ρ
&
2
K
3
m
&
0 25
.
1 75
.
0 75
.
ρ
+
m
ρ
&
2
K
3
m
&
υ
+
m
ρ
ρ
=
densité fluide [kg/m
2
/s]
d
=
diamètre intérieur des tubes de mesure [m]
K...K3 =
constantes (en fonction du DN)
d [m]
K (liquide)
K (gaz)
–3
11
1,2 ⋅ 10
2,0 ⋅ 10
–3
10
1,6 ⋅ 10
2,7 ⋅ 10
–3
8
9,4 ⋅ 10
16,0 ⋅ 10
–3
5,4 ⋅ 10
10
9,2 ⋅ 10
–3
9
2,0 ⋅ 10
3,4 ⋅ 10
–3
6
8,1 ⋅ 10
13,8 ⋅ 10
–3
6
2,3 ⋅ 10
3,9 ⋅ 10
–3
5
4,1 ⋅ 10
7,0 ⋅ 10
–3
5
4,1 ⋅ 10
7,0 ⋅ 10
–3
4
7,8 ⋅ 10
13,3 ⋅ 10
–3
4
7,8 ⋅ 10
13,3 ⋅ 10
–3
4
1,3 ⋅ 10
2,2 ⋅ 10
–3
4
1,3 ⋅ 10
2,2 ⋅ 10
–3
5,2 ⋅ 10
7
8,8 ⋅ 10
–3
6
5,3 ⋅ 10
9,0 ⋅ 10
–3
6
1,7 ⋅ 10
2,9 ⋅ 10
–3
5
3,2 ⋅ 10
5,4 ⋅ 10
–3
4
6,4 ⋅ 10
10,9 ⋅ 10
–3
4
1,4 ⋅ 10
2,4 ⋅ 10
–3
7
6,0 ⋅ 10
10.2 ⋅ 10
–3
6
8,0 ⋅ 10
13.6 ⋅ 10
–3
6
2,7 ⋅ 10
4.6 ⋅ 10
–3
7
5,7 ⋅ 10
9.7 ⋅ 10
–3
5,8 ⋅ 10
6
9.9 ⋅ 10
–3
6
1,9 ⋅ 10
3.2 ⋅ 10
–3
5
3,5 ⋅ 10
6.0 ⋅ 10
–3
4
7,0 ⋅ 10
11.9 ⋅ 10
Promass 63 PROFIBUS PA
Promass M / F
&
2 m
=
Re
π
⋅ ⋅ ⋅
υ ρ
d
&
0 25
.
1 85
.
∆p
=
υ
ρ
K
m
υ
0 25
.
K
2
&
∆p
=
υ
+
K
1
m
ρ
3
]
K1
K2
11
11
1,3 ⋅ 10
10
10
2,4 ⋅ 10
8
9
2,3 ⋅ 10
10
6,6 ⋅ 10
10
9
9
4,3 ⋅ 10
6
7
3,9 ⋅ 10
6
7
1,3 ⋅ 10
5
6
3,3 ⋅ 10
5
6
3,3 ⋅ 10
4
5
8,5 ⋅ 10
4
5
8,5 ⋅ 10
4
5
2,0 ⋅ 10
4
5
2,0 ⋅ 10
7
8,6 ⋅ 10
7
1,7 ⋅ 10
7
6
7
5
1,7 ⋅ 10
9,7 ⋅ 10
6
6
5
5,8 ⋅ 10
4,1 ⋅ 10
5
6
5
1,2 ⋅ 10
1,2 ⋅ 10
4
5
4
4,5 ⋅ 10
1,3 ⋅ 10
4
4
3
8,2 ⋅ 10
3,7 ⋅ 10
7
8
7
1,4 ⋅ 10
2,8 ⋅ 10
6
7
6
2,5 ⋅ 10
1,4 ⋅ 10
6
6
5
8,9 ⋅ 10
6,3 ⋅ 10
7
7
7
9,6 ⋅ 10
1,9 ⋅ 10
6
1,9 ⋅ 10
7
10,6 ⋅ 10
5
6
6
5
6,4 ⋅ 10
4,5 ⋅ 10
5
6
5
1,3 ⋅ 10
1,3 ⋅ 10
4
5
4
5,0 ⋅ 10
1,4 ⋅ 10
Endress+Hauser
0 86
.
&
2
m
K3
0
0
0
0
0
4
129,95 · 10
4
23,33 · 10
4
0,01 · 10
4
5,89 · 10
4
0,11 · 10
4
1,19 · 10
4
0,08 · 10
4
0,25 · 10

Publicité

Table des Matières
loading

Table des Matières