Page 1
GRAPH100+ GRAPH 100 Mode d’emploi Site Internet pédagogique international de CASIO http://edu.casio.com FORUM PÉDAGOGIQUE CASIO http://edu.casio.com/forum/...
Page 2
Conservez la documentation à portée de main pour toute référence future.
Page 3
Manufacturer: CASIO COMPUTER CO., LTD. 6-2, Hon-machi 1-chome Shibuya-ku, Tokyo 151-8543, Japan Responsible within the European Union: CASIO EUROPE GmbH Casio-Platz 1 22848 Norderstedt, Germany...
Page 4
AVANT D’UTILISER LA CALCULATRICE POUR LA PREMIÈRE FOIS... La calculatrice ne contient pas de piles principales lors de l’achat. N’oubliez pas d’effectuer les opérations suivantes pour mettre les piles en place, reinitialiser la calculatrice et régler le contraste avant d’essayer d’utiliser la calculatrice. 1.
Page 5
5. Appuyez sur m. • Si le menu principal indiqué à droite n’apparaît pas, appuyez sur le bouton P au dos de la calculatrice pour réinitialiser la mémoire. Bouton P 6. Utilisez les touches de curseur (f, c, d ou e) pour sélectionner l’icône SYSTEM et appuyez sur w, puis sur 2 ( ) pour afficher l’écran de réglage du contraste.
Démarrage rapide MISE SOUS/HORS TENSION UTILISATION DES MODES CALCULS DE BASE FONCTION DE RÉPÉTITION CALCULS DE FRACTIONS EXPOSANTS FONCTIONS GRAPHIQUES GRAPHE DOUBLE ZOOM SUR CADRE GRAPHE DYNAMIQUE FONCTION DE TABLE 19990401...
Démarrage rapide Démarrage rapide Bienvenue dans le monde des calculatrices graphiques. Ce sommaire n’est pas un guide complet, mais il vous initie aux fonctions les plus communes, de la mise sous tension aux équations graphiques complexes. Quand vous l’aurez lu, vous maîtriserez les opérations de base de cette calculatrice et serez prêt à...
Démarrage rapide defc 2. Utilisez pour mettre MAT en surbrillance et appuyez surw. • C’est l’écran initial du mode RUN MAT, dans • lequel vous pouvez effectuer les calculs manuels, les calculs matriciels et exécuter des pro- grammes. CALCULS DE BASE Avec les calculs manuels, vous entrez vos formules de gauche à...
Démarrage rapide SET UP 1. Appuyez sur pour afficher l’écran de configuration. cccc1 2. Appuyez sur (Deg) pour spécifier les degrés comme unité de mesure angulaire. 3. Appuyez sur pour quitter le menu. 4. Appuyez sur pour vider la calculatrice. cf*sefw 5.
Démarrage rapide CALCULS DE FRACTIONS Vous pouvez utiliser la touche pour introduire des fractions dans un calcul. Le symbole “ { ” est utilisé pour séparer les diverses parties d’une fraction. Exemple: 1+ 1. Appuyez sur bNbfN 2. Appuyez sur bg+dhN Indique 6 + Conversion d’une fraction mixte en un nombre...
Démarrage rapide EXPOSANTS Exemple: 1250 × 2,06 1. Appuyez sur bcfa*c.ag 2. Appuyez sur 3. Appuyez sur . L’indicateur ^ apparaît à l’écran. 4. Appuyez sur . Le ^5 à l’écran indique que 5 est l’exposant. 5. Appuyez sur 19990401...
Démarrage rapide FONCTIONS GRAPHIQUES Les capacités graphiques de la calculatrice permettent de tracer des graphes com- plexes à partir de coordonnées rectangulaires (axe horizontal: x ; axe vertical: y) ou de coordonnées polaires (angle: θ ; distance de l’origine: r). Tous les exemples de graphes suivants s’effectuent depuis le réglage valide immédiatement après la réinitialisation.
Page 13
Démarrage rapide 2. Appuyez sur (Root). Appuyez sur pour d’autres racines. Exemple 3: Déterminer la zone délimitée par l’origine et la racine X = –1 obtenue pour Y = X(X + 1)(X – 2) 1. Appuyez sur (G-SLV) ∫ 2. Appuyez sur dx).
Démarrage rapide GRAPHE DOUBLE Cette fonction vous permet de diviser l’écran en deux zones et d’afficher deux graphes sur le même écran. Exemple: Tracer les deux graphes suivants et déterminer les points d’intersection Y1 = X(X + 1)(X – 2) Y2 = X + 1,2 SET UP u3ccc2...
Démarrage rapide defc 3. Utilisez pour déplacer une nouvelle fois le pointeur. Un cadre apparaît sur l’écran. Déplacez le pointeur de façon à encadrer la zone que vous voulez agrandir. 4. Appuyez sur . La zone agrandie apparaît sur l’écran inactif (côté droit). GRAPHE DYNAMIQUE Le graphe dynamique vous permet de voir de quelle façon la forme d’un graphe est affectée par le changement de valeur d’un des coefficients de la fonction.
Page 16
Démarrage rapide 4. Appuyez sur (VAR) pour affecter la valeur initiale 1 au coefficient A. bwdw 5. Appuyez sur (RANG) pour spécifier la plage et l’incrément pour le changement de valeur du coefficient A. 6. Appuyez sur 7. Appuyez sur (DYNA) pour commencer le tracé...
Démarrage rapide FONCTION DE TABLE Cette fonction permet de produire une table de solutions quand différentes valeurs sont affectées aux variables d’une fonction. Exemple: Créer une table numérique pour la fonction suivante Y = X (X + 1) (X – 2) 1.
Précautions de manipulation • Votre calculatrice est constituée de composants de précision et ne doit jamais être démontée. • Eviter de la laisser tomber et de lui faire subir des chocs violents. • Ne pas ranger ou laisser la calculatrice dans des endroits exposés à une température et humidité...
Page 19
à ou résultant de l’achat ou de l’utilisation de ce matériel. De plus, CASIO Computer Co., Ltd. ne sera pas tenu pour responsable de réclamation quelle qu’elle soit, faite contre l’utilisation de ce matériel par un tiers.
Table des matières Table des matières Familiarisation — A lire en premier! Chapitre 1 Opérations de base Touches .................... 1-1-1 Affichage ..................1-2-1 Saisie et édition de calculs ............... 1-3-1 Menu d’options (OPTN) ..............1-4-1 Menu de données de variables (VARS) ........... 1-5-1 Menu de programmation (PRGM) ...........
Page 22
Table des matières Chapitre 5 Représentation graphique de fonctions Exemples de graphes ............... 5-1-1 Contrôle des paramètres apparaissant sur un écran graphique ..5-2-1 Tracé d’un graphe ................5-3-1 Stockage d’un graphe dans la mémoire d’images ......5-4-1 Tracé de deux graphes sur le même écran ........5-5-1 Représentation graphique manuelle ..........
Page 23
Chapitre 10 Communication de données 10-1 Connexion de deux calculatrices ..........10-1-1 10-2 Connexion de la calculatrice à une imprimante d’étiquettes CASIO ..................10-2-1 10-3 Connexion de la calculatrice à un ordinateur ....... 10-3-1 10-4 Communication des données ............10-4-1 10-5 Précautions lors la communication de données ......
Familiarisation — A lire en premier! A propos du manuel de l’utilisateur u! x( Cette suite de touches indique que vous devez appuyer sur ! puis sur x pour écrire le symbole . Toutes les opérations qui nécessitent l’utilisation de plusieurs touches sont indiquées de cette façon.
Page 25
0-1-1 Familiarisation uGraphes En règle générale, les opérations concernant les 5-1-1 5-1-2 Exemples de graphes Exemples de graphes 5-1 Exemples de graphes Exemple Représenter graphiquement la fonction graphes sont indiquées sur deux pages en vis à vis, Procédure k Comment tracer un graphe simple (1) 1 m GRPH-TBL 2 dvxw Description...
Chapitre Opérations de base Touches Affichage Saisie et édition de calculs Menu d’options (OPTN) Menu de données de variables (VARS) Menu de programmation (PRGM) Utilisation de l’écran de configuration En cas de problème... 19990401...
Page 28
1-1-2 Touches k k k k k Tableau des touches Page Page Page Page Page Page 1-3-5 1-3-5 1-7-1 1-3-5 5-3-6 10-6-1 COPY PASTE CAT/CAL H-COPY 5-2-1 1-1-3 1-3-4 1-4-1 1-2-1 REPLAY 1-6-1 2-4-4 PRGM 1-1-3 1-5-1 2-4-4 2-4-4 2-4-4 2-4-3 2-4-3 2-4-3...
Page 29
1-1-3 Touches k k k k k Inscriptions sur le clavier De nombreuses touches de la calculatrice servent à exécuter plus d’une fonction. Les fonctions indiquées sur le clavier sont codées par couleur pour vous aider à trouver rapidement et aisément celle dont vous avez besoin. Fonction Opération de touche Le codage couleur utilisé...
1-2-1 Affichage 1-2 Affichage k Sélection d’une icône Ce paragraphe décrit comment sélectionner une icône sur le menu principal pour entrer dans le mode souhaité. u u u u u Pour sélectionner une icône 1. Appuyez sur m pour afficher le menu principal. 2.
Page 31
DIFFerential Utilisez ce mode sert pour résoudre les équations différentielles. EQuation (équation différentielle) E-CON Utilisez ce mode sert pour piloter un CASIO EA-100 depuis la calculatrice. LINK Utilisez ce mode pour transférer le contenu de la mémoire ou (liaison) des données de sauvegarde sur une autre machine.
Page 32
1-2-3 Affichage k k k k k A propos du menu de fonction Utilisez les touches de fonction (1 à 6) pour accéder aux menus et commandes dans la barre de menu au bas de l’écran. Les menus et les commandes se différencient par leur aspect. •...
1-2-4 Affichage k k k k k Affichage normal La calculatrice est capable normalement d’afficher des valeurs contenant 10 chiffres. Les valeurs qui dépassent cette limite sont automatiquement converties et affichées sous forme exponentielle. u Comment interpréter le format exponentiel +12 indique que le résultat est égal à...
Page 34
1-2-5 Affichage k k k k k Formats d’affichage spéciaux Cette calculatrice emploie des formats d’affichage spéciaux pour indiquer les fractions, les valeurs hexadécimales et les valeurs exprimées en degrés/minutes/secondes. u Fractions ....Indique: 456+ –––– u Valeurs hexadécimales ....Indique: ABCDEF12 , qui est égal à...
1-3-1 Saisie et édition de calculs 1-3 Saisie et édition de calculs k k k k k Saisie de calculs Lorsque vous êtes prêt à saisir un calcul, appuyez d’abord sur la touche A pour effacer l’affichage. Introduisez ensuite vos formules de calcul, exactement comme elles sont écrites, de gauche à...
Page 36
1-3-2 Saisie et édition de calculs u Pour effacer un pas Remplacer 369 × × 2 par 369 × 2 Exemple Adgj**c u Pour insérer un pas Exemple Remplacer 2,36 par sin2,36 Ac.dgx ddddd u Pour changer le dernier pas saisi Remplacer 396 ×...
Page 37
1-3-3 Saisie et édition de calculs k k k k k Utilisation de la mémoire de répétition Le dernier calcul est toujours stocké dans la mémoire de répétition. Le contenu de la mémoire de répétition peut être rappelé par une pression sur d ou e. Lorsque vous appuyez sur e, le calcul apparaît avec le curseur au début.
1-3-4 Saisie et édition de calculs k Pour faire des corrections dans le calcul d’origine 14 ÷ 0 × 2,3 tapé par erreur à la place de 14 ÷ 10 × 2,3 Exemple Abe/a*c.d Appuyez sur i. Le curseur se met automatiquement à l’emplacement de la cause de l’erreur.
1-3-5 Saisie et édition de calculs 3. Appuyez sur u1 (COPY) pour copier le texte en surbrillance dans le presse- papiers, puis sortez du mode de sélection de texte. Pour annuler la surbrillance sans copier le texte, appuyez sur la touche i. u Collage du texte Amenez le curseur à...
Page 40
1-3-6 Saisie et édition de calculs Exemple 2 Utiliser le catalogue pour saisir la commande Prog Au4(CAT/CAL)6(g)6(g) 5(P)I(Prog) Le catalogue se ferme par une pression sur i ou !i(QUIT). 19990401...
1-4-1 Menu d’options (OPTN) 1-4 Menu d’options (OPTN) Le menu d’options vous permet d’accéder aux fonctions scientifiques et caractéristiques qui ne sont pas indiquées sur le clavier de la calculatrice. Le contenu du menu d’options varie en fonction du mode dans lequel est la calculatrice quand vous appuyez sur la touche K.
Page 42
1-4-2 Menu d’options (OPTN) Les menus de fonctions suivants apparaissent dans d’autres circonstances. u Menu d’option lorsqu’une valeur de la table numérique est affichée dans le mode GRPH TBL ou RECUR • • {LMEM} … {menu de mémoires de listes} °...
1-5-1 Menu de données de variables (VARS) 1-5 Menu de données de variables (VARS) Pour rappeler des données de variables, appuyez sur J pour afficher le menu de données de variables. {V-WIN}/{FACT}/{STAT}/{GRPH}/{DYNA}/ {TABL}/{RECR}/{EQUA* Voir “8-7 Liste des commandes du mode de programmation” pour les détails sur le menu de données de variables (VARS).
1-5-2 Menu de données de variables (VARS) u STAT — Rappel de données statistiques • … {nombre de données} • … {données x à variable unique, variable double} o o o o o • { }/{Σ }/{Σ σ n σ n }/{minX}/{maxX} –1 …{moyenne}/{somme}/{somme des carrés}/{écart-type sur une population}/...
1-5-3 Menu de données de variables (VARS) u GRPH — Rappel des fonctions graphiques • {Y ... {fonction de coordonnées rectangulaires ou d’inégalités}/ {fonction de coordonnées polaires} • {Xt }/{Yt ... fonction de graphe paramétrique {Xt}/{Yt} • {X } ... {fonction de graphe avec constante=X} (Appuyez sur ces touches avant de désigner la zone de stockage.) Rappel des données de configuration de graphes dynamiques u DYNA —...
Page 46
1-5-4 Menu de données de variables (VARS) Rappel des données de formules de récurrence de plages RECR — de tables et du contenu de tables • {FORM} ... {menu de données de formules de récurrence} • { ... expressions { •...
1-6-1 Menu de programmation (PRGM) 1-6 Menu de programmation (PRGM) Pour afficher le menu de programmation (PRGM), accédez d’abord au mode RUN MAT ou • PRGM à partir du menu principal, puis appuyez sur !J(PRGM). Les sélections disponibles dans le menu de programmation (PRGM) sont les suivantes. •...
1-7-1 Utilisation de l’écran de configuration 1-7 Utilisation de l’écran de configuration L’écran de configuration de mode indique l’état actuel des réglages de mode et permet d’effectuer les changements souhaités. Vous pouvez changer les réglages d’un mode de la façon suivante. u Pour changer la configuration d’un mode 1.
Page 49
1-7-2 Utilisation de l’écran de configuration u Func Type (type de fonction graphique) Une pression sur une des touches de fonction suivantes commute aussi la fonction de la touche v. • {Y=}/{r=}/{Parm}/{X=c} ... graphe à {coordonnées rectangulaires}/{coordonnées polaires}/{coordonnées paramétriques}/{X = constante} •...
1-7-3 Utilisation de l’écran de configuration u Display (format d’affichage) • {Fix}/{Sci}/{Norm}/{Eng} ... {nombre de décimales défini}/{nombre de chiffres significatifs}/{réglage d’affichage normal}/{mode Ingénieur} u Stat Wind (méthode de réglage de la fenêtre d’affichage de graphes statistiques) • {Auto}/{Man} ... {automatique}/{manuel} u Reside List (calcul résiduel) •...
Page 51
1-7-4 Utilisation de l’écran de configuration u Dynamic Type (réglage du lieu du graphe dynamique) • {Cnt}/{Stop} ... {sans arrêt (continu)}/{arrêt automatique après 10 tracés} Σ Σ Display {affichage de la valeur dans une table de récurrence} • {On}/{Off} ... {affichage activé}/{affichage désactivé} u Slope (affichage de la dérivée à...
1-8-1 En cas de problème... 1-8 En cas de problème... Si vous rencontrez un problème pendant que vous effectuez une opération, effectuez les opérations suivantes avant de supposer que la calculatrice ne fonctionne pas. k k k k k Rétablissement des réglages de modes initiaux de la calculatrice 1.
Page 53
1-8-2 En cas de problème... k k k k k Message de faible tension des piles Si un des messages suivants apparaît à l’écran, éteignez immédiatement la calculatrice et remplacez les piles principales ou la pile de sauvegarde de la mémoire de la façon indiquée. Si vous continuez d’utiliser la calculatrice sans remplacer les piles principales, l’alimentation sera automatiquement coupée afin de protéger le contenu de la mémoire.
Chapitre Calculs manuels Calculs de base Fonctions spéciales Désignation de l’unité d’angle et du format d’affichage Calculs de fonctions Calculs numériques Calculs avec nombres complexes Calculs binaire, octal, décimal et hexadécimal Calculs matriciels Choisir le menu RUN • Régler l’écran de configuration u3(SET UP) 19990401...
2-1-1 Calculs de base 2-1 Calculs de base k k k k k Calculs arithmétiques • Introduisez les calculs arithmétiques comme ils sont écrits, de gauche à droite. • Utilisez la touche - pour saisir le signe moins devant une valeur négative. •...
Page 56
2-1-2 Calculs de base k k k k k Nombre de décimales, nombre de chiffres significatifs, plage d’affichage normal [SET UP]- [Display] -[Fix] / [Sci] / [Norm] • Même après que le nombre de décimales ou le nombre de chiffres significatifs a été défini, les calculs internes sont effectués avec une mantisse de 15 chiffres et les valeurs affichées sont enregistrées avec une mantisse de 10 chiffres.
Page 57
2-1-3 Calculs de base 200 ÷ 7 × 14 = 400 Exemple Condition Opération Affichage 200/7*14w u3(SET UP)cccccccccc 3 décimales 1(Fix)dwiw 400.000 Le calcul continue en 200/7w 28.571 Ans × utilisant l’affichage de 10 chiffres. 400.000 • Si le même calcul est effectué avec le nombre de chiffres spécifié: 200/7w 28.571 K5(NUM)e(Rnd)w...
Page 58
2-1-4 Calculs de base 3 Puissance/Racine ^( 4 Fractions 5 Format de multiplication abrégé devant π, nom de mémoire ou nom de variable. 2π, 5A, Xmin, F Start, etc. 6 Fonctions de type B Avec ces fonctions, la touche de fonction est enfoncée, puis la valeur introduite. , log, In, , 10 , sin, cos, tan, Asn, Acs, Atn, sinh, cosh, tanh, sinh...
2-1-5 Calculs de base k Opérations de multiplication sans signe de multiplication Vous pouvez omettre le signe de multiplication (×) dans toutes les opérations suivantes. • Avant la transformation de coordonnées et les fonctions de Type B (1 (page 2-1-3) et 6 (page 2-1-4)), sauf pour les signes négatifs.
2-1-6 Calculs de base • Lorsque vous essayez d’effectuer un calcul qui provoque un dépassement de la mémoire (Erreur mémoire). • Lorsque vous utilisez une commande qui exige un argument mais qu’aucun argument valide n’est spécifié (Erreur argument). • Lorsque vous essayez d’utiliser une dimension invalide pendant des calculs matriciels (Erreur dimension).
2-2-1 Fonctions spéciales 2-2 Fonctions spéciales k k k k k Calculs avec variables Exemple Opération Affichage 193.2aav(A)w 193.2 193,2 ÷ 23 = 8,4 av(A)/23w 193,2 ÷ 28 = 6,9 av(A)/28w k k k k k Mémoire u Variables Cette calculatrice est dotée de 28 variables en standard. Vous pouvez utiliser les variables pour sauvegarder les valeurs à...
2-2-2 Fonctions spéciales u Pour afficher le contenu d’une variable Exemple Afficher le contenu de la variable A Aav(A)w u Pour effacer une variable Exemple Effacer la variable A Aaaav(A)w u Pour affecter la même valeur à plus d’une variable [valeur]a [nom de la première variable ]K6(g)6(g)4(SYBL)d(~) [nom de la dernière variable...
2-2-3 Fonctions spéciales u Pour sauvegarder une fonction Exemple Sauvegarder la fonction (A+B) (A–B) dans la mémoire de fonctions 1 (av(A)+al(B)) (av(A)-al(B)) K6(g)5(FMEM) b(Store)bw u Pour rappeler une fonction Exemple Rappeler le contenu de la mémoire de fonctions 1 K6(g)5(FMEM) c(Recall)bw u Pour afficher une liste des fonctions disponibles K6(g)5(FMEM)
2-2-4 Fonctions spéciales u Pour effacer une fonction Exemple Effacer le contenu de la mémoire de fonctions 1 AK6(g)5(FMEM) b(Store)bw • L’exécution d’une sauvegarde quand l’affichage est vierge supprime la fonction de la mémoire de fonctions spécifiée. u Pour utiliser les fonctions mémorisées Exemple Stocker + 1,...
2-2-5 Fonctions spéciales k k k k k Fonction de réponse La fonction de réponse sauvegarde le dernier résultat obtenu après une pression sur w(à moins la pression de la touche w n’entraîne une erreur). Le résultat est sauvegardé dans la mémoire de dernier résultat.
Page 66
2-2-6 Fonctions spéciales k Piles L’appareil utilise des blocs de mémoire appelés “ piles ” pour la sauvegarde des valeurs et des commandes de faible priorité. La pile de valeurs numériques a 10 niveaux, la pile de commandes 26 niveaux et la pile de sous-programmes 10 niveaux. Une erreur se produit si vous effectuez un calcul trop complexe pour la capacité...
2-2-7 Fonctions spéciales k Utilisation d’instructions multiples Les instructions multiples consistent en un certain nombre d’instructions individuelles reliées entre elles pour une exécution séquentielle. Vous pouvez utiliser les instructions multiples dans les calculs manuels et dans les calculs programmés. Il y a deux manières de relier des instructions en instructions multiples.
2-3-1 Désignation de l’unité d’angle et du format d’affichage 2-3 Désignation de l’unité d’angle et du format d’affichage Avant d’effectuer un calcul pour la première fois, vous devez définir l’unité d’angle et le format d’affichage sur l’écran de configuration. Effectuez les opérations de touche suivantes pour afficher l’écran de configuration: mRUN MAT wu3(SET UP).
2-3-2 Désignation de l’unité d’angle et du format d’affichage u Pour définir le nombre de chiffres significatifs (Sci) Exemple Définir trois chiffres significatifs 2(Sci) dw Appuyez sur la touche de fonction qui correspond au nombre de chiffres significatifs que vous souhaitez ( = 0 à...
2-4-1 Calculs de fonctions 2-4 Calculs de fonctions k Menus de fonctions La calculatrice comprend cinq menus de fonctions pour l’accès aux fonctions scientifiques qui ne sont pas indiquées sur le clavier. • Le contenu de chaque menu de fonctions varie selon le mode que vous avez choisi sur le menu principal avant d’avoir appuyé...
Page 71
2-4-2 Calculs de fonctions u u u u u Calculs hyperboliques (HYP) [OPTN]-[HYP] • {sinh}/{cosh}/{tanh} ... hyperbolique {sinus}/{cosinus}/{tangente} –1 –1 –1 • {sinh }/{cosh }/{tanh } ... hyperbolique inverse {sinus}/{cosinus}/{tangente} u u u u u Unités d’angle, conversion de coordonnées, opérations en notation sexagésimale (ANGL) [OPTN]-[ANGL] °...
Page 72
2-4-3 Calculs de fonctions k k k k k Fonctions trigonométriques et trigonométriques inverses • Toujours régler l’unité d’angle avant d’effectuer des calculs de fonction trigonométrique et de fonction trigonométrique inverse. π (90° = ––– radians = 100 grades) • Veillez à désigner Comp pour Mode sur l’écran de configuration. Exemple Opération u3(SET UP)cccc1(Deg)i...
2-4-4 Calculs de fonctions k Fonctions logarithmiques et exponentielles • Veillez à désigner Comp pour Mode sur l’écran de configuration. Exemple Opération 1,23) = 8,990511144 × 10 l1.23w log 1,23 (log –2 I90w In 90 (log 90) = 4,49980967 1,23 = 16,98243652 !l(10 (Pour obtenir l’antilogarithme du logarithme...
2-4-5 Calculs de fonctions k Fonctions hyperboliques et hyperboliques inverses • Veillez à désigner Comp pour Mode sur l’écran de configuration. Exemple Opération K6(g)2(HYP)b(sinh)3.6w sinh 3,6 = 18,28545536 K6(g)2(HYP)c(cosh)1.5- cosh 1,5 – sinh 1,5 2(HYP)b(sinh)1.5w = 0,2231301601 I!-(Ans)w –1,5 (Affichage: –1.5) ±x ±...
2-4-6 Calculs de fonctions k Autres fonctions • Veillez à désigner Comp pour Mode sur l’écran de configuration. Exemple Opération = 3,65028154 )2+!x( = 1,755317302 (3 + i) )(d+!a( +0,2848487846 = (–3) × (–3) = 9 (-3)xw (–3) = –(3 × 3) = –9 -3xw –3 ––––––...
Page 76
2-4-7 Calculs de fonctions k Génération de nombres aléatoires (Ran#) Cette fonction génère un nombre réellement aléatoire ou séquentiellement aléatoire de 10 chiffres, supérieur à zéro et inférieur à 1. • Un nombre réellement aléatoire est généré si vous ne désignez rien comme argument. Exemple Opération K6(g)1(PROB)e(Ran#)w...
2-4-8 Calculs de fonctions k Conversion de coordonnées u u u u u Coordonnées rectangulaires u u u u u Coordonnées polaires • Avec les coordonnées polaires, θ peut être calculé et affiché dans une plage de –180°< θ < 180° (les radians et les grades ont la même plage). •...
2-4-9 Calculs de fonctions k Permutation et combinaison u u u u u Permutation u u u u u Combinaison nPr = ––––– nCr = ––––––– (n – r)! r! (n – r)! • Veillez à désigner Comp pour Mode sur l’écran de configuration. Exemple Calculer le nombre possible d’arrangements différents quand 4 éléments sont sélectionnés parmi 10 éléments...
Page 79
2-4-10 Calculs de fonctions k k k k k Fractions • Les valeurs fractionnaires sont affichées avec le nombre entier en premier, puis le numérateur et enfin le dénominateur. • Veillez à désigner Comp pour Mode sur l’écran de configuration. Exemple Opération ––...
2-4-11 Calculs de fonctions k Calculs en notation Ingénieur Introduisez les symboles Ingénieur sur le menu de notation Ingénieur. • Veillez à désigner Comp pour Mode sur l’écran de configuration. Exemple Opération u3(SET UP)cccccccccc 4(Eng)i 999k (kilo) + 25k (kilo) 999K5(NUM)g(E-SYM)g(k)+255(NUM) g(E-SYM)g(k)w = 1,024M (méga)
2-5-1 Calculs numériques 2-5 Calculs numériques Ce paragraphe décrit les paramètres qui sont disponibles sur les menus que vous utilisez pour effectuer des calculs avec différentielles/différentielles quadratiques, intégration, Σ, valeur maximale/minimale et résolution. Quand le menu d’options est affiché, appuyez sur 4(CALC) pour faire apparaître le menu d’analyse de fonction.
2-5-2 Calculs numériques k Calculs de différentielles [OPTN]-[CALC]-[d /dx] Pour effectuer des calculs de différentielles, affichez d’abord le menu d’analyse de fonctions, puis saisissez les valeurs indiquées dans la formule suivante. K4(CALC)b( ,tol) f(x) point pour lequel la dérivée doit être déterminée, tol: tolérance) d/dx ( f (x), a) ⇒...
Page 83
2-5-3 Calculs numériques Exemple Déterminer la dérivée au point = 3 pour la fonction – 6, avec pour tolérance “tol” = 1 – 5 f(x) Introduisez la fonction AK4(CALC)b( d/dx )vMd+evx+v-g, Indiquez le point pour lequel vous voulez déterminer la dérivée. Indiquez la valeur de tolérance.
2-5-4 Calculs numériques u Applications des calculs différentiels • Les différentielles peuvent être additionnées, soustraites, multipliées et divisées par chacune d’elles. ––– f (a) = f '(a), ––– g (a) = g'(a) Par conséquent: f '(a) + g'(a), f '(a) × g'(a), etc. •...
Page 85
2-5-5 Calculs numériques k k k k k Calculs de différentielles quadratiques [OPTN]-[CALC]-[d Après avoir affiché le menu d’analyse de fonctions, vous pouvez saisir des différentielles quadratiques en utilisant un des deux formats suivants. K4(CALC)c( ,tol) f(x) point de coefficient différentiel, tol: tolérance) –––...
2-5-6 Calculs numériques u Applications des calculs de différentielles quadratiques • Les opérations arithmétiques peuvent être effectuées en utilisant deux différentielles quadratiques. ––– f (a) = f ''(a), ––– g (a) = g''(a) Par conséquent: f ''(a) + g''(a), f ''(a) × g''(a), etc. •...
Page 87
2-5-7 Calculs numériques k k k k k Calculs d’intégrations [OPTN]-[CALC]-[ ∫ dx] Pour effectuer des calculs d’intégration, affichez d’abord le menu d’analyse de fonctions, puis entrez les valeurs indiquées dans la formule suivante. K4(CALC)d ( ∫ dx) f(x) , point initial, point final, tolérance)
Page 88
2-5-8 Calculs numériques Exemple Effectuer un calcul d’intégration pour la fonction indiquée ci-dessous avec une tolérance de “tol” = 1 ∫ + 3x + 4) dx f (x) Introduisez la fonction ∫dx AK4(CALC)d( )cvx+dv+e, Indiquez le point initial et le point final. b,f, Indiquez la valeur de tolérance.
Page 89
2-5-9 Calculs numériques Notez les points suivants pour obtenir de bonnes valeurs d’intégration. (1) Lorsque les fonctions cycliques pour les valeurs d’intégration deviennent positives ou négatives pour différentes divisions, effectuez le calcul pour des cycles uniques ou divisez entre négatif et positif, puis ajoutez les résultats. Partie positive (S) Partie négative (S)
Page 90
2-5-10 Calculs numériques k k k k k Calculs de Σ [OPTN]-[CALC]-[Σ ] Pour effectuer des calculs de Σ , affichez d’abord le menu d’analyse de fonctions, puis entrez les valeurs indiquées dans la formule suivante. α β K4(CALC)e(Σ) β Σ...
2-5-11 Calculs numériques u Applications des calculs de Σ • Opérations arithmétiques utilisant des expressions avec calculs de Σ Σ Σ Expressions: k = 1 k = 1 – T , etc. Opérations possibles: • Opérations arithmétiques et de fonctions utilisant les résultats de calculs de Σ 2 ×...
Page 92
2-5-12 Calculs numériques k k k k k Calculs de valeurs maximale/minimale [OPTN]-[CALC]-[FMin]/[FMax] Après avoir affiché le menu d’analyse de fonctions, vous pouvez effectuer des calculs de valeurs maximale/minimale en utilisant les formats suivants et trouver le maximum et le <...
Page 93
2-5-13 Calculs numériques Exemple 2 Déterminer la valeur maximale de l’intervalle défini par le point initial 0 et le point final 3, avec une précision de 6 pour la y = –x fonction f(x) Saisissez AK4(CALC)g(FMax) -vx+cv+c, , b = Saisissez l’intervalle a,d, Saisissez la précision...
2-6-1 Calculs avec nombres complexes 2-6 Calculs avec nombres complexes Vous pouvez effectuer des calculs avec addition, soustraction, multiplication, division, des calculs de fonctions, parenthèses et des calculs à partir de la mémoire avec les nombres complexes comme vous le faites avec les calculs manuels décrits aux pages 2-1-1 et 2-4-6. Vous pouvez sélectionner le mode de calcul de nombre complexe en sélectionnant un des réglages suivants comme paramètre “Complex Mode”...
Page 95
2-6-2 Calculs avec nombres complexes k k k k k Valeur absolue et argument [OPTN]-[CPLX]-[Abs]/[Arg] La machine considère un nombre complexe dans la formule Z = comme coordonnée sur un plan de Gauss et calcule la valeur absolue Z et l’argument (arg). Calculer la valeur absolue (r) et l’argument ( θ...
Page 96
2-6-3 Calculs avec nombres complexes k k k k k Nombres complexes conjugués [OPTN]-[CPLX]-[Conjg] a + bi Un nombre complexe de format devient un nombre complexe conjugué de format – bi Exemple Calculer le nombre complexe conjugué pour le nombre complexe AK3(CPLX)d(Conjg) (c+e!a( k k k k k Extraction des parties réelle et imaginaire d’un nombre...
Page 97
2-6-4 Calculs avec nombres complexes k k k k k Forme polaire et transformation sous forme rectangulaire ^ θ i] ' ' ' ' ' [OPTN]-[CPLX]-[ Procédez de la façon suivante pour transformer un nombre complexe affiché sous forme rectangulaire en forme polaire, et inversement. Exemple Transformer la forme rectangulaire du nombre complexe 1 + 3 sous...
2-7-1 Calculs binaire, octal, décimal et hexadécimal 2-7 Calculs binaire, octal, décimal et hexadécimal Vous pouvez utiliser le mode RUN MAT et les réglages de système binaire, octal, décimal • et hexadécimal pour effectuer des calculs qui contiennent des valeurs binaires, octales, décimales et hexadécimales.
Page 99
2-7-2 Calculs binaire, octal, décimal et hexadécimal • Les plages de calcul pour chacun des systèmes de notation sont les suivantes. Valeurs binaires Positive: 0 < < 111111111111111 Négative: 1000000000000000 < < 1111111111111111 Valeurs octales Positive: 0 < < 17777777777 Négative: 20000000000 <...
Page 100
2-7-3 Calculs binaire, octal, décimal et hexadécimal k k k k k Sélection du système numérique Vous pouvez désigner le système décimal, hexadécimal, binaire ou octal sur l’écran de configuration. Une fois que vous avez appuyé sur la touche de fonction qui correspond au système que vous voulez utiliser, appuyez sur w.
2-7-4 Calculs binaire, octal, décimal et hexadécimal × ABC Exemple 2 Saisir et exécuter 123 , quand le système numérique de par défaut est décimal ou hexadécimal u3(SET UP)2(Dec)i A1(d~o)e(o)bcd* 1(d~o)c(h)ABCw 3(DISP)c(Hex)w k k k k k Valeurs négatives et opérations logiques Appuyez sur 2(LOGIC) pour afficher un menu de négations ou d’opérateurs logiques.
2-7-5 Calculs binaire, octal, décimal et hexadécimal Exemple 2 Afficher le résultat de “36 or 1110 ” par une valeur octale u3(SET UP)5(Oct)i Adg2(LOGIC) e(or)1(d~o)d(b) bbbaw Exemple 3 Mettre en négation 2FFFED u3(SET UP)3(Hex)i A2(LOGIC)c(Not) cFFFEDw u Transformation du système numérique Appuyez sur 3(DISP) pour afficher un menu des fonctions de transformation du système numérique.
2-8-1 Calculs matriciels 2-8 Calculs matriciels MAT et appuyez 1(MAT) pour effectuer Depuis le menu principal, accédez au mode RUN • des calculs matriciels. Vous pouvez effectuer les opérations suivantes grâce aux 26 mémoires matricielles (Mat A à Mat Z) et à la mémoire matricielle de dernier résultat (MatAns). •...
2-8-2 Calculs matriciels k Saisie et édition de matrices Appuyez sur 1(MAT) pur afficher l’écran d’édition de matrice. Utilisez cet écran pour saisir et éditer des matrices. m × n … ) × n ( Matrice de lignes colonnes None… Aucune matrice définie •...
2-8-3 Calculs matriciels u Pour introduire des valeurs dans la matrice Exemple Introduire les données suivantes dans la matrice B: 1 2 3 4 5 6 c (Sélectionne Mat B.) bwcwdw ewfwgw (La donnée est introduite dans l’élément en surbrillance. A chaque pression sur w, l’élément suivant de droite est mis en surbrillance.) # Vous pouvez introduire des nombres...
2-8-4 Calculs matriciels u Suppression d’une matrice Vous pouvez supprimer une matrice particulière ou toutes les matrices en mémoire. u Pour supprimer une matrice particulière 1. Quand la liste de matrices est à l’écran, utilisez f et c pour mettre la matrice que vous voulez supprimer en surbrillance.
2-8-5 Calculs matriciels k Opérations sur les éléments d’une matrice Procédez de la manière suivante pour préparer une matrice avant d’effectuer une opération. 1. Quand la liste de matrices est à l’écran, utilisez f et c pour mettre le nom de la matrice que vous voulez utiliser en surbrillance.
Page 108
2-8-6 Calculs matriciels u u u u u Pour calculer le produit scalaire d’une ligne Exemple Calculer le produit scalaire de la ligne 2 de la matrice suivante en la multipliant par 4: Matrice A = 2(R-OP)c(×Row) Indiquez la valeur du multiplicateur. Désignez le numéro de la ligne.
2-8-7 Calculs matriciels u Pour additionner deux lignes Exemple Ajouter la ligne 2 à la ligne 3 de la matrice suivante: Matrice A = 2(R-OP)e(Row+) Désignez le numéro de la ligne que vous ajoutez. Désignez le numéro de la ligne à laquelle vous ajoutez la première ligne.
Page 110
2-8-8 Calculs matriciels u Pour insérer une ligne Exemple Insérer une nouvelle ligne entre les lignes une et deux de la matrice suivante: Matrice A = INS) • u Pour ajouter une ligne Exemple Ajouter une nouvelle ligne sous la ligne 3 de la matrice suivante: Matrice A = ADD) •...
2-8-9 Calculs matriciels u Opérations sur les colonnes • {C DEL} ... {suppression d’une colonne} • • {C INS} ... {insertion d’une colonne} • • {C ADD} ... {addition d’une colonne} • u Pour supprimer une colonne Exemple Supprimer la colonne 2 de la matrice suivante: Matrice A = 6(g)1(C DEL)
2-8-10 Calculs matriciels u Pour ajouter une colonne Exemple Ajouter une nouvelle colonne à droite de la colonne 2 de la matrice suivante: Matrice A = 6(g)3(C ADD) • k Modification de matrices à l’aide des commandes de matrice [OPTN]-[MAT] u Pour afficher les commandes de matrice 1.
2-8-11 Calculs matriciels u Format d’introduction des données dans une matrice [OPTN]-[MAT]-[Mat] Voici le format que vous devez utiliser quand vous introduisez des données pour créer une matrice à l’aide de la commande Mat. = [ [a , ..., a ] [a , ..., a ] ..
Page 114
2-8-12 Calculs matriciels u Pour introduire une matrice unité [OPTN]-[MAT]-[Ident] Utilisez la commande Identity pour créer une matrice unité. Exemple 2 Créer une matrice unité 3 × 3 comme matrice A K2(MAT)g(Ident) da2(MAT)b(Mat)av(A)w Nombre de lignes et colonnes u Pour contrôler les dimensions d’une matrice [OPTN]-[MAT]-[Dim] Utilisez la commande Dim pour contrôler les dimensions d’une matrice existante.
2-8-13 Calculs matriciels u Modification d’une matrice à l’aide des commandes de matrice Vous pouvez aussi utiliser les commandes de matrice pour affecter des valeurs à une matrice et rappeler des valeurs d’une matrice existante, remplir tous les éléments d’une matrice existante par la même valeur, combiner deux matrices en une seule matrice et affecter le contenu d’une matrice à...
Page 116
2-8-14 Calculs matriciels u u u u u Pour remplir une matrice par des valeurs identiques et combiner deux matrices en une seule [OPTN]-[MAT]-[Fill]/[Augmnt] Utilisez la commande Fill pour remplir tous les éléments d’une matrice existante par une valeur identique et la commande Augment pour combiner deux matrices existantes en une seule.
Page 117
2-8-15 Calculs matriciels u u u u u Pour affecter le contenu d’une colonne à une liste [OPTN]-[MAT]-[M → List] Utilisez le format suivant avec la commande Mat→List pour affecter une colonne et une liste. Mat → List (Mat X, ) →...
2-8-16 Calculs matriciels k Calculs matriciels [OPTN]-[MAT] Utilisez le menu de commandes de matrice pour effectuer des calculs matriciels. u Pour afficher les commandes de matrice 1. A partir du menu principal, accédez au mode RUN MAT. • 2. Appuyez sur K pour afficher le menu d’options. 3.
2-8-17 Calculs matriciels u Opérations arithmétiques sur une matrice [OPTN]-[MAT]-[Mat] Exemple 1 Additionner les deux matrices suivantes (matrice A + matrice B) : AK2(MAT)b(Mat)av(A)+ 2(MAT)b(Mat)al(B)w Exemple 2 Calculer le produit scalaire de la matrice suivante en utilisant le multiplicateur 5: Matrice A = AfK2(MAT)b(Mat) av(A)w...
2-8-18 Calculs matriciels u Déterminant [OPTN]-[MAT]-[Det] Exemple Obtenir le déterminant de la matrice suivante: Matrice A = –1 –2 K2(MAT)d(Det)2(MAT)b(Mat) av(A)w u Transposition de matrice [OPTN]-[MAT]-[Trn] Une matrice est transposée quand ses lignes deviennent les colonnes et ses colonnes deviennent les lignes. Exemple Transposer la matrice suivante: Matrice A =...
2-8-19 Calculs matriciels u Inversion d’une matrice –1 [OPTN]-[MAT]-[x Exemple Inverser la matrice suivante: Matrice A = K2(MAT)b(Mat) av(A)!) ( –1 u Élévation d’une matrice au carré [OPTN]-[MAT]-[x Exemple Élever la matrice suivante au carré: M atrice A = K2(MAT)b(Mat)av(A)xw # Seules les matrices carrées (même nombre # Une matrice inversée doit remplir les de lignes et de colonnes) peuvent être...
2-8-20 Calculs matriciels u Élévation d’une matrice à une puissance [OPTN]-[MAT]-[ ] Exemple Élever la matrice suivante à la puissance 3: Matrice A = K2(MAT)b(Mat)av(A) u Détermination de la valeur absolue, de la partie entière, de la partie fractionnaire et de l’entier maximal d’une matrice [OPTN]-[NUM]-[Abs]/[Frac]/[Int]/[Intg] Exemple Déterminer la valeur absolue de la matrice suivante:...
Chapitre Listes Une liste est un lieu de stockage de données multiples. Cette calculatrice peut contenir au maximum 6 fichiers de 20 listes chacun. Les listes pourront être utilisées dans des calculs arithmétiques et statistiques ou pour le graphisme. Numéro d’élément Plage d’affichage Élément Colonne...
3-1-1 Saisie et édition d’une liste (Menu STAT) 3-1 Saisie et édition d’une liste (Menu STAT) Accédez au mode STAT depuis le menu principal pour saisir des données dans une liste et utiliser ensuite cette liste pour diverses opérations. u u u u u Pour introduire des valeurs une à une Utilisez les touches de curseur pour mettre la surbrillance sur le nom ou l’élément de la liste que vous voulez sélectionner.
Page 125
3-1-2 Saisie et édition d’une liste (Menu STAT) u u u u u Pour introduire une série de valeurs 1. Utilisez les touches de curseur pour amener la surbrillance sur une autre liste. 2. Appuyez sur !*( { ), puis saisissez les valeurs souhaitées en appuyant sur , entre chaque valeur.
Page 126
3-1-3 Saisie et édition d’une liste (Menu STAT) k k k k k Édition des valeurs d’une liste u u u u u Pour changer la valeur d’un élément Utilisez d ou e pour amener la surbrillance sur l’élément dont vous voulez changer la valeur.
3-1-4 Saisie et édition d’une liste (Menu STAT) u u u u u Pour supprimer tous les éléments d’une liste Procédez comme suit pour supprimer toutes les données d’une liste. 1. Utilisez les touches de curseur pour amener la surbrillance sur un élément quelconque de la liste dont vous voulez supprimer les données.
Page 128
3-1-5 Saisie et édition d’une liste (Menu STAT) k k k k k Classement des valeurs d’une liste Les valeurs d’une liste peuvent être classées par ordre ascendant ou descendant. La surbrillance peut se trouver dans n’importe quel élément de la liste. u u u u u Pour classer une seule liste Ordre ascendant 1.
Page 129
3-1-6 Saisie et édition d’une liste (Menu STAT) u u u u u Pour classer plusieurs listes Vous pouvez mettre en relation plusieurs listes pour les classer de sorte que tous leurs éléments soient arrangés en fonction d’une liste servant de référence. La liste de référence est classée dans l’ordre ascendant ou descendant, et les éléments des listes qui sont en relation sont mis en ordre mais de manière à...
Page 130
3-1-7 Saisie et édition d’une liste (Menu STAT) Ordre descendant Procédez de la même façon que pour le classement dans l’ordre ascendant. Mais vous devez appuyer sur c(SortD) à la place de b(SortA). # Vous pouvez désigner une valeur de 1 à 6 pour # Si vous désignez la valeur 0 comme nombre de le nombre de listes à...
3-2-1 Traitement des données d’une liste (Menu RUN • MAT) 3-2 Traitement des données d’une liste (Menu RUN • MAT) Les données des listes peuvent être utilisées dans les calculs arithmétiques et de fonctions. Différentes fonctions permettent de traiter facilement et rapidement les données des listes. Vous pouvez utiliser les fonctions de traitement de données dans les modes RUN MAT, •...
Page 132
3-2-2 Traitement des données d’une liste (Menu RUN • MAT) Exemple Créer cinq données (chacune d’elles contenant 0) dans la liste 1 AfaK1(LIST)c(Dim) 1(LIST)b(List) bw Vous pouvez voir la liste créée en accédant au mode STAT. Procédez de la façon suivante pour désigner le nombre de lignes et de colonnes de données et le nom de la matrice dans l’instruction d’affectation puis créer une matrice.
Page 133
3-2-3 Traitement des données d’une liste (Menu RUN • MAT) u Pour créer une suite de nombres [OPTN]-[LIST]-[Seq] K1(LIST)d(Seq) <expression> , <nom de variable> , <valeur initiale> , <valeur finale> , <incrément> ) w • Le résultat de cette opération est sauvegardé dans la mémoire ListAns. Exemple Introduire la séquence numérique 1 , 11...
Page 134
3-2-4 Traitement des données d’une liste (Menu RUN • MAT) u Pour trouver parmi deux listes celle qui contient la plus petite valeur [OPTN]-[LIST]-[Min] K1(LIST)e(Min)1(LIST)b(List) <numéro de liste 1-20> ,1(LIST)b (List) <numéro de liste 1-20>)w • Les deux listes doivent contenir le même nombre de données, sinon une erreur se produira.
Page 135
3-2-5 Traitement des données d’une liste (Menu RUN • MAT) Exemple Calculer la moyenne des données de la liste 1 (36, 16, 58, 46, 56), dont la fréquence est indiquée dans la liste 2 (75, 89, 98, 72, 67) AK1(LIST)g(Mean) 1(LIST)b(List)b, 1(LIST)b(List)c)w u Pour calculer la médiane des données d’une liste...
3-2-6 Traitement des données d’une liste (Menu RUN • MAT) u Pour calculer la somme des données d’une liste [OPTN]-[LIST]-[Sum] K1(LIST)i(Sum)1(LIST)b(List)<numéro de liste 1-20>w Exemple Calculer la somme des données de la liste 1 (36, 16, 58, 46, 56) AK1(LIST)i(Sum) 1(LIST)b(List)bw u Pour calculer le porduit cumulé...
3-2-7 Traitement des données d’une liste (Menu RUN • MAT) u Pour calculer le pourcentage représenté par chaque donnée [OPTN]-[LIST]-[%] K1(LIST)l(%)1(LIST)b(List)<numéro de liste 1-20>w • L’opération précédente calcule le pourcentage de chaque donnée par rapport au total de la liste. •...
Page 138
3-2-8 Traitement des données d’une liste (Menu RUN • MAT) u u u u u Pour combiner des listes [OPTN]-[LIST]-[Augmnt] • Vous pouvez combiner différentes listes en une seule liste. La liste obtenue sera stockée dans la mémoire ListAns. K1(LIST)s(Augmnt)1(LIST)b(List) <numéro de liste 1-20> ,1(LIST)b(List) <numéro de liste 1-20>...
3-3-1 Calculs arithmétiques à partir de listes (Menu RUN • MAT) 3-3 Calculs arithmétiques à partir de listes (Menu RUN • MAT) Vous pouvez effectuer des calculs arithmétiques à partir d’une ou deux listes et d’une valeur numérique. Mémoire de dernier résultat (ListAns) Les résultats du calcul sont −...
3-3-2 Calculs arithmétiques à partir de listes (Menu RUN • MAT) u Pour introduire directement une liste de valeurs Vous pouvez aussi introduire directement une liste de valeurs avec {, } et ,. Exemple 1 Introduire la liste: 56, 82, 64 !*( { )fg,ic, ge!/( } ) w: Le résultat est mis dans ListAns.
3-3-3 Calculs arithmétiques à partir de listes (Menu RUN • MAT) u Pour rappeler la valeur d’un élément particulier de la liste Vous pouvez rappeler la valeur d’un élément particulier d’une liste et l’utiliser dans un calcul. Désignez le numéro d’élément en le mettant entre crochets. Exemple Calculer le sinus de la valeur stockée dans l’élément 3 de la liste 2 sK1(LIST)b(List)c!+( [ )d!-( ] )w...
3-3-4 Calculs arithmétiques à partir de listes (Menu RUN • MAT) k Représentation graphique d’une fonction à partir d’une liste Quand vous utilisez les fonctions graphiques de la calculatrice, vous pouvez introduire une fonction du type: Y1 = XList 1. Si la liste 1 contient les valeurs 1, 2, 3, cette fonction produira trois graphes: Y = X, Y = 2X, Y = 3X.
Page 143
3-3-5 Calculs arithmétiques à partir de listes (Menu RUN • MAT) Exemple Utiliser la liste 1 et la liste 2 pour effectuer Liste 1 Liste 2 Une liste est créée avec les résultats 1 K1(LIST)b(List)bM1(LIST)b(List)cw La liste qui en résulte est stockée dans la mémoire de dernier résultat (ListAns).
3-4-1 Changement de fichiers de listes 3-4 Changement de fichiers de listes Vous pouvez stocker jusqu’à 20 listes (liste 1 à liste 20) dans chaque fichier (fichier 1 à fichier 6) après quoi une opération simple vous permettra de passer d’un fichier à l’autre. u Pour passer d’un fichier de listes à...
Chapitre Calcul d’équations La calculatrice graphique scientifique peut effectuer les trois types de calculs suivants: • Equations linéaires simultanées • Equations de degré élevé • Calculs avec résolution A partir du menu principal, accédez au mode EQUA. • {SIML} ... {équation linéaire de 2 à 30 inconnues} •...
4-1-1 Equations linéaires simultanées 4-1 Equations linéaires simultanées Description Vous pouvez résoudre des équations linéaires simultanées de 2 à 30 inconnues. • Equations linéaires simultanées à deux inconnues: • Equations linéaires simultanées à trois inconnues: Réglage 1. A partir du menu principal, accédez au mode EQUA. Exécution 2.
4-1-2 Equations linéaires simultanées Exemple Résoudre les équations linéaires simultanées suivantes pour , et – 2 = – 1 – 5 = – 7 Procédure 1 m EQUA 2 1(SIML) 2(3) 3 ewbw-cw-bw bwgwdwbw -fwewbw-hw 4 6(SOLV) Ecran de résultat # Les calculs internes utilisent une mantisse de C’est la raison pour laquelle la précision diminue 15 chiffres mais le résultat est affiché...
4-2-1 Equations de degré élevé 4-2 Equations de degré élevé Description Vous pouvez utiliser cette calculatrice pour résoudre des équations de degré élevé, telles que les équations quadratiques et les équations cubiques. • Equation quadratique: (a ≠ + bx + c = •...
Page 149
4-2-2 Equations de degré élevé Exemple Résoudre l’équation cubique – 2 – + 2 = 0 Procédure 1 m EQUA 2 2(POLY) 2(3) 3 bw-cw-bwcw 4 6(SOLV) Ecran de résultat (Solutions multiples) (Solution avec nombre complexe) 19990401...
4-3-1 Calculs avec résolution 4-3 Calculs avec résolution Description Le mode de calcul Solve permet de déterminer la valeur d’une variable dans une formule, sans avoir à effectuer tout le calcul de résolution d’équation. Réglage 1. A partir du menu principal, accédez au mode EQUA. Exécution 2.
Page 151
4-3-2 Calculs avec résolution Exemple Un objet lancé en l’air à une vitesse initiale V met le temps T à atteindre la hauteur H. Utiliser la formule suivante pour résoudre la vitesse initiale V lorsque H = 14 (mètres), T = 2 (secondes) et l’accélération terrestre est G = 9,8 (m/s H = VT –...
4-4-1 Que faire quand une erreur se produit ? 4-4 Que faire quand une erreur se produit ? u Erreur pendant la saisie de la valeur du coefficient Appuyez sur la touche i pour effacer l’erreur et revenir à la valeur enregistrée comme coefficient avant que l’erreur ne se produise.
Chapitre Représentation graphique de fonctions Les sections 5-1 et 5-2 de ce chapitre donnent les informations de base pour tracer un graphe. Les sections suivantes décrivent d’autres fonctions et caractéristiques plus avancées de la représentation graphique. Sur le menu principal sélectionnez l’icône qui correspond au type de graphe que vous voulez tracer ou au type de table que vous voulez générer.
5-1-1 Exemples de graphes 5-1 Exemples de graphes k k k k k Comment tracer un graphe simple (1) Description Pour tracer un graphe, saisissez simplement la fonction appropriée. Réglage 1. Depuis le menu principal, accédez au mode GRPH TBL. •...
Page 155
5-1-2 Exemples de graphes Exemple Représenter graphiquement la fonction Procédure 1 m GRPH • 2 dvxw 3 5(DRAW) (ou w) Ecran de résultat 19990401...
Page 156
5-1-3 Exemples de graphes k k k k k Comment tracer un graphe simple (2) Description Vous pouvez sauvegarder jusqu’à 20 fonctions dans la mémoire et en sélectionner une pour la représenter. Réglage 1. Depuis le menu principal, accédez au mode GRPH TBL.
Page 157
5-1-4 Exemples de graphes Exemple Saisir les fonctions indiquées ci-dessous et tracer leurs graphes 2 = 3sin2 θ Y1 = 2 – 3, Procédure 1 m GRPH • 2 3(TYPE)b(Y=)cvx-dw 3(TYPE)c(r=)dscvw 3 5(DRAW) Ecran de résultat (Paramétrique) (Inéquation) (Marquage) 19990401...
Page 158
5-1-5 Exemples de graphes k k k k k Comment tracer un graphe simple (3) Description Procédez de la façon suivante pour représenter graphiquement la fonction d’une parabole, d’un cercle, d’une ellipse ou d’une hyperbole. Réglage 1. Depuis le menu principal, accédez au mode CONICS. Exécution 2.
Page 159
5-1-6 Exemples de graphes Exemple Représenter graphiquement le cercle (X–1) + (Y–1) Procédure 1 m CONICS 2 ccccw 3 bwbwcw 4 6(DRAW) Ecran de résultat (Parabole) (Ellipse) (Hyperbole) 19990401...
5-2-1 Contrôle des paramètres apparaissant sur un écran graphique 5-2 Contrôle des paramètres apparaissant sur un écran graphique k k k k k Réglages de fenêtre d’affichage (V-Window) Utilisez la fenêtre d’affichage pour définir la plage des axes ainsi que l’espacement de l’échelle des axes.
5-2-2 Contrôle des paramètres apparaissant sur un écran graphique u Précautions concernant les réglages de la fenêtre d’affichage • La saisie de zéro pour T θ ptch entraîne une erreur. • Toute saisie interdite (nombre hors du domaine de définition, signe négatif sans valeur, etc.) cause une erreur.
5-2-3 Contrôle des paramètres apparaissant sur un écran graphique k k k k k Initialisation et standardisation de la fenêtre d’affichage u Pour initialiser la fenêtre d’affichage 1. Depuis le menu principal, accédez au mode GRPH TBL. • 2. Appuyez sur !K(V-Window). L’écran de réglage de la fenêtre d’affichage apparaît.
5-2-4 Contrôle des paramètres apparaissant sur un écran graphique k k k k k Mémoire de fenêtre d’affichage Vous pouvez mémoriser six ensembles de réglages de fenêtre d’affichage dans la mémoire de fenêtre d’affichage pour les rappeler lorsque vous en aurez besoin. u Pour stocker les réglages de fenêtre d’affichage 1.
Page 164
5-2-5 Contrôle des paramètres apparaissant sur un écran graphique k k k k k Spécification de la plage du graphe Description Vous pouvez définir une plage (point initial, point final) d’une fonction avant d’en tracer le graphe. Réglage 1. Depuis le menu principal, accédez au mode GRPH TBL.
Page 165
5-2-6 Contrôle des paramètres apparaissant sur un écran graphique – 2 dans la plage de – 2 < < 4 Exemple Représentez graphiquement Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –3, Xmax = 5, Xscale = 1 Ymin = –10, Ymax = 30, Yscale = 5 Procédure...
Page 166
5-2-7 Contrôle des paramètres apparaissant sur un écran graphique k k k k k Zoom Description Cette fonction sert à agrandir ou réduire le graphe affiché à l’écran. Réglage 1. Tracez le graphe. Exécution 2. Désignez le type de zoom. 2(ZOOM)b(Box) ...
Page 167
5-2-8 Contrôle des paramètres apparaissant sur un écran graphique Exemple Représenter graphiquement + 5)( + 4)( + 3) et effectuer un zoom sur cadre Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –8, Xmax = 8, Xscale = 2 Ymin = –4, Ymax = 2, Yscale = 1...
Page 168
5-2-9 Contrôle des paramètres apparaissant sur un écran graphique k k k k k Zoom avec facteur Description Le zoom avec facteur permet d’agrandir ou de réduire un graphe depuis la position actuelle du curseur. Réglage 1. Tracez le graphe. Exécution 2.
Page 169
5-2-10 Contrôle des paramètres apparaissant sur un écran graphique Exemple Agrandir cinq fois les graphes des deux expressions indiquées ci- dessous sur les axes pour voir s’ils sont tangents. Y1 = ( + 4)( + 1)( – 3), Y2 = 3 + 22 Utilisez les réglages de fenêtre d’affichage suivants.
Page 170
5-2-11 Contrôle des paramètres apparaissant sur un écran graphique k k k k k Affichage ou non du menu de fonctions Appuyez sur ua pour afficher ou non le menu au bas de l’écran. Il est possible de voir une partie du graphe caché par le menu si celui-ci n’est pas affiché. Lorsque vous utilisez la fonction d’affichage des coordonnées (TRACE) ou d’autres fonctions pendant lesquelles le menu n’est normalement pas affiché, vous pouvez afficher le menu pour exécuter une commande du menu.
Page 171
5-2-12 Contrôle des paramètres apparaissant sur un écran graphique k k k k k A propos de la fenêtre Calc La fenêtre Calc s’ouvre par une pression sur u4(CAT/CAL) lorsqu’un graphe ou une table numérique est affiché. Vous pouvez utiliser la fenêtre Calc pour effectuer des calculs à partir des valeurs obtenues lors de l’analyse de graphes, ou pour changer la valeur affectée à...
5-3-1 Tracé d’un graphe 5-3 Tracé d’un graphe Vous pouvez stocker 20 fonctions au maximum dans la mémoire. Ces fonctions pourront être éditées, rappelées et représentées graphiquement. k k k k k Spécification du type de graphe Avant de stocker une fonction de graphe en mémoire, vous devez spécifier le type de graphe. 1.
Page 173
5-3-2 Tracé d’un graphe u Pour stocker une fonction paramétrique * Exemple Stocker les fonctions suivantes dans les zones de mémoire Xt3 et Yt3 : = 3 sin T = 3 cos T 3(TYPE)d(Param) (Désigne une expression paramétrique.) dsvw(Saisit et stocke l’expression dcvw(Saisit et stocke l’expression u Pour stocker une expression avec X = constante * Exemple...
5-3-3 Tracé d’un graphe u Pour créer une fonction composite Exemple Enregistrer les fonctions suivantes en tant que fonction composite: Y1= (X + 1), Y2 = X Affectez Y1 ° Y2 à Y3 et Y2 ° Y1 à Y4. (Y1 ° Y2 = ((x + 4) Y2 °...
Page 175
5-3-4 Tracé d’un graphe ffffi1(SEL)5(DRAW) Les trois écrans ci-dessus s’obtiennent avec la fonction Trace. Voir “5-11 Analyse de fonctions” pour de plus amples informations. • Si vous ne désignez pas de nom de variable (variable A ci-dessus), la calculatrice utilisera les variables par défaut, figurant dans la liste suivante.
5-3-5 Tracé d’un graphe k k k k k Edition et suppression de fonctions u Pour éditer une fonction en mémoire Exemple Remplacer l’expression – 5 stockée dans la zone de mémoire Y1 par – 3 e (Affiche le curseur.) eeeeDd(Change le contenu.) w(Stocke la nouvelle fonction de graphe.) u Pour changer le type d’une fonction *...
5-3-6 Tracé d’un graphe k k k k k Sélection de fonctions pour la représentation graphique u Pour définir le statut avec tracé ou sans tracé de graphe Exemple Sélectionner les fonctions suivantes pour le tracé : 2 = 5 sin3 θ Y1 = 2 –...
5-3-7 Tracé d’un graphe k k k k k Mémoire de graphes Vous pouvez stocker jusqu’à 20 ensembles de données de fonctions de graphes dans la mémoire de graphes pour les rappeler ultérieurement. Les données suivantes sont sauvegardées dans la mémoire de graphes. •...
5-4-1 Stockage d’un graphe dans la mémoire d’images 5-4 Stockage d’un graphe dans la mémoire d’images Vous pouvez stocker 20 images dans la mémoire d’images pour les rappeler ultérieurement. Vous pourrez alors superposer un de ces graphes à celui qui est affiché à l’écran. u Pour stocker un graphe dans la mémoire d’images 1.
5-5-1 Tracé de deux graphes sur le même écran 5-5 Tracé de deux graphes sur le même écran k k k k k Copie du graphe sur l’écran secondaire Description Le double graphe permet de diviser l’écran en deux parties. Vous pouvez alors représenter deux fonctions différentes de chaque côté...
5-5-2 Tracé de deux graphes sur le même écran Exemple Représenter graphiquement + 1)( – 1) sur l’écran principal et l’écran secondaire. Utilisez les réglages de fenêtre d’affichage suivants. (Ecran principal) Xmin = –2, Xmax = 2, Xscale = 0.5 Ymin = –2, Ymax = 2, Yscale = 1...
Page 182
5-5-3 Tracé de deux graphes sur le même écran k k k k k Représentation graphique de deux fonctions différentes Description Procédez de la façon suivante pour représenter deux fonctions différentes sur l’écran principal et l’écran secondaire. Réglage 1. Depuis le menu principal, accédez au mode GRPH TBL.
Page 183
5-5-4 Tracé de deux graphes sur le même écran Exemple Représenter graphiquement + 1)( – 1) sur l’écran principal et – 3 sur l’écran secondaire. Utilisez les réglages de fenêtre d’affichage suivants. (Ecran principal) Xmin = –4, Xmax = 4, Xscale = 1 Ymin = –5, Ymax = 5,...
Page 184
5-5-5 Tracé de deux graphes sur le même écran k k k k k Utilisation du zoom pour agrandir l’écran secondaire Description Procédez de la façon suivante pour agrandir le graphe de l’écran principal et l’afficher sur l’écran secondaire. Réglage 1.
Page 185
5-5-6 Tracé de deux graphes sur le même écran Exemple Représentez graphiquement + 1)( – 1) sur l’écran principal, puis utilisez le zoom sur cadre pour l’agrandir. Utilisez les réglages de fenêtre d’affichage suivants. (Ecran principal) Xmin = –2, Xmax = 2, Xscale = 0.5 Ymin = –2, Ymax = 2,...
5-6-1 Représentation graphique manuelle 5-6 Représentation graphique manuelle k k k k k Graphe à coordonnées rectangulaires Description La saisie de la commande de graphe dans le mode RUN MAT permet de tracer des • graphes à coordonnées rectangulaires. Réglage 1.
Page 187
5-6-2 Représentation graphique manuelle Exemple Représentez graphiquement – 4 Utilisez les réglages de fenêtre d’affichage suivants. Xmin = – 5, Xmax = 5, Xscale = 2 Ymin = –10, Ymax = 10, Yscale = 2 Procédure 1 m RUN • 2 !K(V-Window) -fwfwcwc -bawbawfwi 3 K6(g)6(g)2(SKTCH)b(Cls)w...
Page 188
5-6-3 Représentation graphique manuelle k k k k k Graphe d’intégration Description La validation de la commande de graphe dans le mode RUN MAT permet de tracer le • graphe des fonctions produites par un calcul d’intégration. Le résultat du calcul est affiché dans la partie inférieure gauche de l’écran et la plage du calcul apparaît en noir sur le graphe.
Page 189
5-6-4 Représentation graphique manuelle ∫ Exemple Tracez le graphe pour l’intégrale + 2)( – 1)( – 3) dx, –2 en utilisant 10 comme nombre de divisions. Utilisez les réglages de fenêtre d’affichage suivants. Xmin = – 4, Xmax = 4, Xscale = 1 Ymin = –8, Ymax = 12,...
5-6-5 Représentation graphique manuelle k k k k k Tracé de graphes multiples sur le même écran Description Procédez de la façon suivante pour affecter différentes valeurs à une variable contenue dans une expression et superposer les graphes qui en résultent sur l’écran. Réglage 1.
Page 191
5-6-6 Représentation graphique manuelle Exemple Représenter graphiquement – 3 lorsque la valeur de A change dans l’ordre de 3, 1, –1. Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –5, Xmax = 5, Xscale = 1 Ymin = –10, Ymax = 10, Yscale = 2 Procédure...
5-7-1 Utilisation de tables 5-7 Utilisation de tables k k k k k Stockage d’une fonction et génération d’une table numérique u Pour stocker une fonction Exemple Stocker la fonction – 2 dans la zone de mémoire Y1 Utilisez f et c pour amener la surbrillance dans la liste des fonctions de graphes sur la zone de mémoire où...
5-7-2 Utilisation de tables u Pour générer une table à partir d’une liste 1. Lorsque la liste de fonctions de graphes est à l’écran, affichez l’écran de configuration. 2. Mettez Variable en surbrillance et appuyez sur 2(LIST) pour afficher la fenêtre déroulante.
5-7-3 Utilisation de tables Vous pouvez utiliser les touches de curseur pour déplacer la surbrillance sur la table et effectuer les opérations suivantes. • Afficher la valeur de l’élément sélectionné au bas de l’écran, en utilisant le nombre de décimales, le nombre de chiffres significatifs et les réglages de plage d’affichage exponentiel actuellement définis.
Page 195
5-7-4 Utilisation de tables k k k k k Edition et suppression de fonctions u Pour éditer une fonction Exemple Remplacer la fonction – 2 dans la zone de mémoire Y1 par – 5 Utilisez f et c pour amener la surbrillance sur la fonction que vous voulez éditer.
5-7-5 Utilisation de tables k k k k k Edition de tables Vous pouvez utiliser le menu de table pour effectuer les opérations suivantes après avoir généré une table. • Changer les valeurs de la variable • Editer (supprimer, insérer et ajouter) des lignes •...
5-7-6 Utilisation de tables u Opérations sur les lignes u Pour supprimer une ligne Exemple Supprimer la ligne 2 de la table générée page 5-7-2 6(g)1(R·DEL) u Pour insérer une ligne Exemple Insérer une nouvelle ligne entre les lignes 1 et 2 dans la table générée page 5-7-2 6(g)2(R·INS) 19990401...
5-7-7 Utilisation de tables u Pour ajouter une ligne Exemple Ajouter une nouvelle ligne en dessous de la ligne 7 dans la table générée page 5-7-2 6(g)3(R·ADD) cccccc u Suppression d’une table 1. Affichez la table et appuyez sur 2(DEL·A). 2.
Page 199
5-7-8 Utilisation de tables k k k k k Copie d’une colonne d’une table dans une liste En effectuant une opération simple, vous pourrez copier le contenu d’une colonne d’une table numérique dans une liste. u Pour copier une table dans une liste Exemple Copier le contenu de la colonne x dans la liste 1 K1(LMEM)
Page 200
5-7-9 Utilisation de tables k k k k k Tracé d’un graphe depuis une table numérique Description Procédez de la façon suivante pour générer une table numérique et tracer un graphe à partir des valeurs de la table. Réglage 1. Depuis le menu principal, accédez au mode GRPH TBL.
Page 201
5-7-10 Utilisation de tables Exemple Stocker les deux fonctions suivantes, générer une table numérique et tracer ensuite un graphe linéaire. Définir une plage de –3 à 3 et 1 comme incrément. Y1 = 3 – 2, Y2 = Utilisez les réglages de fenêtre d’affichage suivants. Xmin = 0, Xmax = 6, Xscale = 1...
Page 202
5-7-11 Utilisation de tables k k k k k Définition d’une plage pour la génération d’une table numérique Description Procédez de la façon suivante pour définir une plage de table numérique lors du calcul de données dispersées à partir d’une fonction. Réglage 1.
Page 203
5-7-12 Utilisation de tables Exemple Stocker les trois fonctions suivantes et générer une table numérique pour les fonctions Y1 et Y3. Définir une plage de –3 à 3 et 1 comme incrément. Y1 = 3 – 2, Y2 = + 4, Y3 = Procédure 1 m GRPH •...
Page 204
5-7-13 Utilisation de tables k k k k k Affichage simultané d’une table numérique et d’un graphe Description En spécifiant T+G pour Dual Screen sur l’écran de configuration, vous pourrez afficher en même temps une table numérique et un graphe. Réglage 1.
Page 205
5-7-14 Utilisation de tables Exemple Stocker la fonction Y1 = 3 – 2 et afficher simultanément sa table numérique et son graphe linéaire. Définir une plage de –3 à 3 et 1 comme incrément. Utilisez les réglages de fenêtre d’affichage suivants. Xmin = 0, Xmax = 6, Xscale = 1...
Page 206
5-7-15 Utilisation de tables k k k k k Utilisation de la liaison Graphe-Table Description Avec le double graphe, vous pouvez procéder de la façon suivante pour relier les écrans de graphe et de table pour que le pointeur sur l’écran graphique saute à la position de la valeur actuellement sélectionnée sur la table.
Page 207
5-7-16 Utilisation de tables Exemple Stocker la fonction Y1 = 3log et afficher simultanément sa table numérique et son graphe à points séparés. Utiliser une plage de table comprise entre 2 et 9, avec 1 comme incrément. Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –1, Xmax = 10, Xscale = 1...
5-8-1 Représentation graphique dynamique 5-8 Représentation graphique dynamique k k k k k Utilisation du graphe dynamique Description Le graphe dynamique permet de définir une plage de valeurs pour les coefficients d’une fonction et d’observer comment un graphe est affecté par les changements de la valeur du coefficient.
Page 209
5-8-2 Représentation graphique dynamique Exemple Utilisez le graphe dynamique pour tracer = A ( – 1) – 1, lorsque le coefficient A change de 2 à 5 par incréments de 1. Le graphe doit être tracé 10 fois. Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –6.3, Xmax = 6.3, Xscale = 1 Ymin = –3.1, Ymax = 3.1, Yscale = 1 (réglages initiaux) Procédure...
Page 210
5-8-3 Représentation graphique dynamique k k k k k Exemples d’applications de graphe dynamique Description Vous pouvez aussi utiliser le graphe dynamique pour simuler des phénomènes physiques simples. Réglage 1. Depuis le menu principal, accédez au mode DYNA. 2. Effectuez les réglages de fenêtre d’affichage. Exécution 3.
Page 211
5-8-4 Représentation graphique dynamique Exemple Calculer le parcours dans le temps T d’un ballon lancé en l’air à une vitesse initiale V et à un angle de θ degrés de l’horizontale de la façon suivante. X = (Vcos θ )T, Y = (Vsin θ ) T – (1/2)gT (g = 9,8m/s Utiliser le graphe dynamique pour marquer le chemin du ballon lancé...
5-8-5 Représentation graphique dynamique k Réglage de la vitesse du graphe dynamique Vous pouvez procéder de la façon suivante pour ajuster la vitesse du graphe dynamique pendant le tracé. 1. Pendant le tracé d’un graphe dynamique, appuyez sur A pour passer au menu de réglage de la vitesse.
Page 213
5-8-6 Représentation graphique dynamique k k k k k Utilisation de la mémoire de graphe dynamique Vous pouvez stocker les conditions de tracé d’un graphe dynamique et les données d’écran dans la mémoire de graphe dynamique pour les rappeler ultérieurement lorsque vous en aurez besoin.
5-9-1 Représentation graphique d’une formule de récurrence 5-9 Représentation graphique d’une formule de récurrence k k k k k Génération d’une table numérique depuis une formule de récurrence Description Vous pouvez saisir jusqu’à trois des formules de récurrence suivantes et générer une table numérique.
Page 215
5-9-2 Représentation graphique d’une formule de récurrence Exemple Générer une table numérique à partir de la récurrence entre trois termes, telle qu’exprimée par , avec = 1, (séquence de Fibonaci) comme termes initiaux, lorsque la valeur change de 1 à 6. Procédure 1 m RECUR 2 3(TYPE)d(...
Page 216
5-9-3 Représentation graphique d’une formule de récurrence k k k k k Représentation graphique d’une formule de récurrence (1) Description Après avoir généré une table numérique à partir d’une formule de récurrence, vous pouvez représenter les valeurs sur un graphe linéaire ou un graphe à points séparés. Réglage 1.
Page 217
5-9-4 Représentation graphique d’une formule de récurrence Exemple Générer une table numérique à partir d’une récurrence entre deux termes telle qu’exprimée par +1, avec = 1 comme terme initial, lorsque la valeur de change de 1 à 6. Utiliser les valeurs de la table pour tracer un graphe linéaire.
Page 218
5-9-5 Représentation graphique d’une formule de récurrence k k k k k Représentation graphique d’une formule de récurrence (2) Description La génération d’une table numérique à partir d’une formule de récurrence et la représentation graphique de ses valeurs lorsque Σ Display (affichage de Σ) est validé (On) s’effectuent de la façon suivante.
Page 219
5-9-6 Représentation graphique d’une formule de récurrence Exemple Générer une table numérique à partir d’une récurrence entre deux termes telle qu’exprimée par +1, avec = 1 comme terme initial, lorsque la valeur de change de 1 à 6. Utiliser les valeurs de la table pour tracer un graphe linéaire à...
Page 220
5-9-7 Représentation graphique d’une formule de récurrence k k k k k Graphe WEB (Convergence, Divergence) Description ) est représenté graphiquement à supposé que pour la régression linéaire à deux termes ), composée de . On peut ensuite déterminer si la fonction est convergente ou divergente.
5-9-8 Représentation graphique d’une formule de récurrence Exemple Tracer le graphe WEB de la formule de récurrence = –3( + 0,2 et vérifier s’il y a convergence ou divergence. Utiliser la plage de table et les réglages de fenêtre d’affichage suivants. Plage de table Start = 0, End = 6, = 0,01,...
5-10-1 Changement de l’aspect d’un graphe 5-10 Changement de l’aspect d’un graphe k k k k k Tracé d’une ligne Description La fonction de dessin (Sketch) vous permet de tracer des points et des lignes à l’intérieur de graphes. Réglage 1.
Page 223
5-10-2 Changement de l’aspect d’un graphe Exemple Tracer une ligne qui est tangente au point (2, 0) sur le graphe de + 2)( – 2). Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –5, Xmax = 5, Xscale = 1 Ymin = –5, Ymax = 5, Yscale = 1...
Page 224
5-10-3 Changement de l’aspect d’un graphe k k k k k Insertion de commentaires Description Vous pouvez insérer des commentaires où vous voulez dans un graphe. Réglage 1. Tracez le graphe. Exécution 2. Appuyez sur 3(SKTCH)e(Text) pour faire apparaître un pointeur au centre de l’écran.
Page 225
5-10-4 Changement de l’aspect d’un graphe Exemple Insérer du texte dans le graphe de + 2)( – 2). Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –5, Xmax = 5, Xscale = 1 Ymin = –5, Ymax = 5, Yscale = 1 Procédure 1 m GRPH...
Page 226
5-10-5 Changement de l’aspect d’un graphe k k k k k Dessin à main levée Description Vous pouvez utiliser l’option crayon pour tracer un graphe à main levée. Réglage 1. Tracez le graphe. Exécution 2. Appuyez sur 3(SKTCH)f(Pen) pour faire apparaître un pointeur au centre de l’écran.
Page 227
5-10-6 Changement de l’aspect d’un graphe Exemple Utiliser le crayon pour tracer le graphe de + 2)( – 2). Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –5, Xmax = 5, Xscale = 1 Ymin = –5, Ymax = 5, Yscale = 1 Procédure 1 m GRPH...
Page 228
5-10-7 Changement de l’aspect d’un graphe k k k k k Changement de l’arrière-plan d’un graphe Vous pouvez utiliser l’écran de configuration pour spécifier le contenu d’une zone de la mémoire d’images (Pict 1 à Pict 20) comme fond d’écran graphique. Exemple 1 En utilisant le cercle X = 1 comme fond, utiliser le graphe...
Page 229
5-10-8 Changement de l’aspect d’un graphe Tracez le graphe dynamique. (Y = X – 1) ↓↑ (Y = X ↓↑ (Y = X + 1) • Voir “5-8-1 Représentation graphique dynamique” pour les détails sur la fonction de graphe dynamique. 19990401...
5-11-1 Analyse de fonctions 5-11 Analyse de fonctions k k k k k Lecture des coordonnées sur une ligne du graphe Description La fonction Trace permet de déplacer un pointeur sur un graphe et de lire les coordonnées à la position du pointeur. Réglage 1.
Page 231
5-11-2 Analyse de fonctions Exemple Lire les coordonnées le long du graphe de la fonction indiquée ci-dessous. Y1 = – 3 Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –5, Xmax = 5, Xscale = 1 Ymin = –10, Ymax = 10, Yscale = 2 Procédure...
Page 232
5-11-3 Analyse de fonctions k k k k k Affichage de la dérivée Description Vous pouvez utiliser la fonction Trace non seulement pour afficher les coordonnées mais aussi pour afficher la dérivée à la position actuelle du pointeur. Réglage 1. Sur l’écran de configuration, désignez On pour Derivative (dérivée). 2.
Page 233
5-11-4 Analyse de fonctions Exemple Lire les coordonnées et les dérivées le long du graphe de la fonction indiquée ci-dessous. Y1 = – 3 Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –5, Xmax = 5, Xscale = 1 Ymin = –10, Ymax = 10, Yscale = 2...
Page 234
5-11-5 Analyse de fonctions k k k k k Graphe à table Description Vous pouvez utiliser la fonction Trace pour lire les coordonnées d’un graphe et les stocker dans une table numérique. Vous pouvez aussi utiliser le double graphe pour stocker simultanément le graphe et la table numérique.
Page 235
5-11-6 Analyse de fonctions Exemple Sauvegarder dans une table les coordonnées proches des points d’intersection à X = 0 des deux graphes montrés ci-dessous et stocker le contenu de la table dans la liste 1. Y1 = – 3, Y2 = – Utilisez les réglages de fenêtre d’affichage suivants.
Page 236
5-11-7 Analyse de fonctions k k k k k Arrondi de coordonnées Description Cette fonction sert à arrondir les valeurs des coordonnées affichées par la fonction Trace. Réglage 1. Tracez le graphe. Exécution 2. Appuyez sur 2(ZOOM)i(Rnd). Les valeurs de la fenêtre d’affichage changent automatiquement en fonction de la valeur Rnd.
Page 237
5-11-8 Analyse de fonctions Exemple Utiliser l’arrondi de coordonnées et afficher les coordonnées proches du point d’intersection des deux graphes produits par les fonctions suivantes. Y1 = – 3, Y2 = – Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –5, Xmax = 5, Xscale = 1 Ymin = –10,...
Page 238
5-11-9 Analyse de fonctions k k k k k Calcul de la racine Description Cette fonction fournit plusieurs méthodes pour l’analyse de graphes. Réglage 1. Tracez les graphes. Exécution 2. Sélectionnez la fonction d’analyse. 4(G-SLV) b(Root) ... Calcul de la racine c(Max) ...
Page 239
5-11-10 Analyse de fonctions Exemple Tracer le graphe indiqué ci-dessous et calculer la racine pour Y1 Y1 = + 2)( – 2) Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –6.3, Xmax = 6.3, Xscale = 1 Ymin = –3.1, Ymax = 3.1, Yscale = 1 (réglages initiaux) Procédure 1 m GRPH •...
Page 240
5-11-11 Analyse de fonctions k k k k k Calcul du point d’intersection de deux graphes Description Procédez de la façon suivante pour calculer le point d’intersection de deux graphes. Réglage 1. Tracez les graphes. Exécution 2. Appuyez sur 4(G-SLV)5(Isect). Si trois graphes ou plus sont affichés, le curseur de sélection (k) apparaîtra sur le graphe au numéro inférieur.
Page 241
5-11-12 Analyse de fonctions Exemple Tracer les deux fonctions indiquées ci-dessous et déterminer le point d’intersection entre Y1 et Y2. Y1 = + 1, Y2 = Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –5, Xmax = 5, Xscale = 1 Ymin = –5, Ymax = 5, Yscale = 1...
5-11-13 Analyse de fonctions k Détermination des coordonnées de points donnés Description La procédure suivante décrit comment déterminer l’ordonnée pour un point donné et l’abscisse pour un point donné. Réglage 1. Tracez le graphe. Exécution 2. Sélectionnez la fonction que vous voulez effectuer. Si plusieurs graphes sont affichés, le curseur de sélection (k) apparaîtra sur le graphe au numéro inférieur.
Page 243
5-11-14 Analyse de fonctions Exemple Tracer le graphe des deux fonctions indiquées ci-dessous et déterminer l’ordonnée pour = 0,5 et l’abscisse pour = 2,2 sur le graphe Y2. Y1 = + 1, Y2 = + 2)( – 2) Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –6.3, Xmax = 6.3, Xscale = 1 Ymin = –3.1, Ymax = 3.1, Yscale = 1 (réglages initiaux) Procédure...
Page 244
5-11-15 Analyse de fonctions k k k k k Calcul de la valeur de l’intégrale pour une plage donnée Description Procédez de la façon suivante pour obtenir les valeurs d’intégration pour une plage donnée. Réglage 1. Tracez le graphe. Exécution ∫dx 2.
Page 245
5-11-16 Analyse de fonctions Exemple Tracer le graphe de la fonction indiquée ci-dessous et déterminer la valeur de l’intégrale à (–2, 0). Y1 = + 2)( – 2) Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –6.3, Xmax = 6.3, Xscale = 1 Ymin = –4, Ymax = 4, Yscale = 1...
5-11-17 Analyse de fonctions k k k k k Analyse des graphes de fonctions implicites Vous pouvez déterminer les approximations des résultats analytiques suivants à partir des graphes de fonctions implicites. • Foyer/sommet/excentricité • Latus rectum • Centre/rayon • Intersection de •...
5-11-18 Analyse de fonctions u Pour calculer le foyer, le sommet et le latus rectum [G-SLV]-[Focus]/[Vertex]/[Length] Exemple Déterminer le foyer, le sommet et le latus rectum de la parabole X = (Y – 2) Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –1, Xmax = 10, Xscale = 1...
Page 248
5-11-19 Analyse de fonctions u Pour calculer le centre et le rayon [G-SLV]-[Center]/[Radius] Exemple Déterminer le centre et le rayon du cercle (X + 2) + (Y + 1) Utilisez les réglages de fenêtre d’affichage suivants. Xmin = –6.3, Xmax = 6.3, Xscale = 1 Ymin = –3.1, Ymax = 3.1, Yscale = 1 4(G-SLV) b(Center)
Page 249
5-11-20 Analyse de fonctions 4(G-SLV) h(Y-Icpt) (Calcule l’intersection de • Appuyez sur e pour calculer la seconde paire d’intersections . Appuyez sur d pour revenir à la première paire d’intersections. u Pour tracer et analyser l’axe de symétrie et la directrice [G-SLV]-[Sym]/[Dirtrx] Exemple Tracer l’axe de symétrie et la directrice de la parabole...
Chapitre Graphes et calculs statistiques Ce chapitre explique comment entrer des données statistiques dans des listes et calculer la moyenne, le maximum ou d’autres valeurs statistiques. Il indique aussi comment effectuer des calculs de régression. Avant d’effectuer des calculs statistiques Calcul et représentation graphique de données statistiques à...
6-1-1 Avant d’effectuer des calculs statistiques 6-1 Avant d’effectuer des calculs statistiques A partir du menu principal, accédez au mode STAT et affichez les listes de données statistiques. Utilisez ces listes pour introduire des données et effectuer des calculs statistiques. Utilisez f, c, d et e pour déplacer la surbrillance sur les listes.
6-1-2 Avant d’effectuer des calculs statistiques k Changement des paramètres d’un graphe Vous pouvez changer les paramètres de tracé de graphe comme nécessaire (SET). Vous pouvez aussi sauvegarder trois ensembles de paramètres et les rappeler lorsque vous en avez besoin (SEL). SET et SEL sont des options pratiques qui éliminent les réglages complexes à...
6-1-3 Avant d’effectuer des calculs statistiques k k k k k Définition des paramètres de la représentation graphique 1. Réglages généraux de graphe [GRPH]-[Set] Ce paragraphe explique comment utiliser l’écran de réglages généraux pour effectuer les réglages suivants pour chaque graphe (GPH1, GPH2, GPH3). •...
6-1-4 Avant d’effectuer des calculs statistiques u Pour afficher l’écran de réglages généraux de graphe [GRPH]-[Set] Appuyez sur 1(GRPH)f(Set) pour afficher l’écran de réglages généraux de graphe. • Les réglages indiqués ici ne servent qu’à titre d’exemples. Les réglages de votre écran peuvent être différents.
6-1-5 Avant d’effectuer des calculs statistiques 2. Statut avec ou sans tracé de graphe [GRPH]-[Select] L’opération suivante peut être utilisée pour définir le statut avec ou sans tracé de graphe (On/Off) de chaque graphe sur le menu. u Pour définir le statut avec ou sans tracé de graphe 1.
6-2-1 Calcul et représentation graphique de données statistiques à variable unique 6-2 Calcul et représentation graphique de données statistiques à variable unique Les données à variable unique sont des données ne comprenant qu’une seule variable. Si vous calculez la grandeur moyenne des élèves d’une classe, par exemple, il n’y a qu’une variable, la grandeur.
6-2-2 Calcul et représentation graphique de données statistiques à variable unique k Graphe en boîte-médiane (Box) Ce type de graphe vous permet de voir de quelle manière un grand nombre de données sont regroupées dans des plages particulières. Un boîte comprend toutes les données dans une zone du 25 percentile au 75 percentile, avec une ligne tracée au 50...
6-2-3 Calcul et représentation graphique de données statistiques à variable unique k Courbe de répartition normale (N Dis) • La courbe de répartition normale est tracée à l’aide de la fonction de répartition normale suivante. ( x–x ) – 2xσ (2 π) xσ...
6-2-4 Calcul et représentation graphique de données statistiques à variable unique k Affichage des résultats du calcul d’un graphe à variable unique Les statistiques à variable unique peuvent être exprimées sous forme de graphes et de paramètres. Lorsque des graphes sont affichés, les résultats du calcul à variable unique apparaissent de la façon suivante lorsque vous appuyez sur 4(CALC)b(1VAR).
6-2-5 Calcul et représentation graphique de données statistiques à variable unique k Tracé d’histogramme Exemple Représenter l’histogramme correspondant au classement des données suivantes en 5 classes d’amplitude identique. Liste 2 Liste 1 • Définissez la fenêtre !K(V-Window) en choisissant Xmin = 0, Xmax = 50 Ymin = –2, Ymax = 10 •...
6-3-1 Calcul et représentation graphique de données statistiques à variable double 6-3 Calcul et représentation graphique de données statistiques à variable double k Représentation d’un diagramme de dispersion et d’un graphe linéaire Description La procédure suivante permet de marquer les points d’un diagramme et de les relier pour produire un graphe linéaire Réglage 1.
Page 263
6-3-2 Calcul et représentation graphique de données statistiques à variable double Exemple Saisir les deux groupes de données suivants. Marquer ensuite les données sur un diagramme de dispersion et relier les points pour produire un graphe linéaire 0,5, 1,2, 2,4, 4,0, 5,2, –2,1, 0,3, 1,5, 2,0, 2,4 Procédure 1 m STAT...
6-3-3 Calcul et représentation graphique de données statistiques à variable double k Tracé d’un graphe de régression Description Procédez de la façon suivante pour saisir des données statistiques à variable double, effectuer un calcul de régression en utilisant ces données puis représenter graphiquement les résultats obtenus.
6-3-4 Calcul et représentation graphique de données statistiques à variable double Exemple Saisir les deux groupes de données indiqués ci-dessous et marquer les données sur un diagramme de dispersion. Effectuer ensuite une régression logarithmique sur les données pour afficher les paramètres de régression logarithmique, puis tracer le graphe de régression correspondant.
Page 266
6-3-5 Calcul et représentation graphique de données statistiques à variable double k k k k k Sélection du type de régression Après avoir représenté graphiquement des données statistiques à double variable, appuyez sur 4(CALC). Vous pouvez ensuite utiliser le menu de fonctions au bas de l’écran pour sélectionner un type de régression.
Page 267
6-3-6 Calcul et représentation graphique de données statistiques à variable double k k k k k Graphe de régression linéaire La régression linéaire utilise la méthode des moindres carrés pour marquer une ligne droite qui passe près du plus grand nombre de points possible et renvoie les valeurs pour la pente et l’intersection y (ordonnée y lorsque x = 0) de la ligne.
Page 268
6-3-7 Calcul et représentation graphique de données statistiques à variable double k k k k k Graphe de régression quadratique/cubique/quartique Un graphe de régression quadratique/cubique/quartique représente la connexion des points d’un diagramme de dispersion. Il utilise la méthode des moindres carrés pour tracer une courbe qui passe près du plus grand nombre de points possible;...
6-3-8 Calcul et représentation graphique de données statistiques à variable double k Graphe de régression logarithmique La régression logarithmique exprime comme fonction logarithmique de . La formule de × ln régression logarithmique standard est , et si l’on suppose que X = ln , la formule correspond à...
Page 270
6-3-9 Calcul et représentation graphique de données statistiques à variable double k k k k k Graphe de régression de puissance La régression de puissance exprime comme proportion de la puissance de . La formule × de régression de puissance standard est , et si l’on prend les logarithmes des deux ×...
Page 271
6-3-10 Calcul et représentation graphique de données statistiques à variable double k k k k k Graphe de régression logistique La régression logistique convient aux phénomènes liés au temps, où il y a un accroissement continu jusqu’à un point de saturation. Voici la formule du modèle de régression logistique.
Page 272
6-3-11 Calcul et représentation graphique de données statistiques à variable double k k k k k Affichage des résultats du calcul d’un graphe à variable double Les statistiques à variable double peuvent être exprimées sous forme de graphes et de valeurs paramétriques.
Page 273
6-3-12 Calcul et représentation graphique de données statistiques à variable double k k k k k Graphes multiples Vous pouvez tracer plus d’un graphe sur le même écran en procédant comme indiqué dans “Changement des paramètres d’un graphe” pour définir le statut avec ou sans tracé de deux ou des trois graphes, puis appuyez sur 6(DRAW) (voir page 6-1-5).
6-3-13 Calcul et représentation graphique de données statistiques à variable double k Superposition d’un graphe de fonction à un graphe de statistiques Description Vous pouvez superposer un graphe de statistique à variable double sur n’importe quel type de graphe de fonction. Réglage 1.
Page 275
6-3-14 Calcul et représentation graphique de données statistiques à variable double Exemple Saisir les deux groupes de données indiqués ci-dessous. Marquer ensuite les données sur un diagramme de dispersion et superposer le graphe de fonction = 2ln 0,5, 1,2, 2,4, 4,0, 5,2, –2,1, 0,3, 1,5, 2,0, 2,4 Procédure 1 m STAT...
6-4-1 Exécution de calculs statistiques 6-4 Exécution de calculs statistiques Tous les calculs statistiques étaient effectués jusqu’à présent après l’affichage d’un graphe. Voici maintenant comment utiliser seulement les calculs statistiques. u u u u u Pour définir les listes de données pour les calculs statistiques Vous devez entrer les données statistiques pour le calcul que vous voulez effectuer et désigner où...
Page 277
6-4-2 Exécution de calculs statistiques k k k k k Calculs statistiques à variable unique Dans les exemples précédents de “Marquage d’un point de probabilité normale” et “Histogramme (diagramme à barres)” à “Graphe linéaire”, les résultats des calculs statistiques étaient affichés après le tracé du graphe. Il s’agissait d’expressions numériques des caractéristiques des variables utilisées pour la représentation graphique.
6-4-3 Exécution de calculs statistiques k Calculs de régression Dans “Graphe de régression linéaire” à “Graphe de régression logistique”, les résultats des calculs de régression étaient affichés après le tracé du graphe. Ici, chaque coefficient de la ligne de régression et de la courbe de régression est exprimé sous forme d’un nombre. Vous pouvez déterminer directement la même expression à...
Page 279
6-4-4 Exécution de calculs statistiques k Calcul des valeurs estimées ( , ) Après avoir tracé un graphe de régression dans le mode STAT, vous pouvez utiliser le mode MAT pour calculer les valeurs estimées des paramètres du graphe de •...
6-4-5 Exécution de calculs statistiques k Calcul de distributions de probabilité Vous pouvez calculer les distributions de probabilité pour des statistiques à variable unique avec le mode RUN MAT. • Appuyez sur K6(g)1(PROB) pour afficher un menu de fonctions contenant les paramètres suivants.
Page 281
6-4-6 Exécution de calculs statistiques 1. Introduisez les grandeurs dans la liste 1 et la fréquence dans la liste 2. 2. Effectuer des calculs statistiques à variable unique* 2(CALC)e(Set) c2(LIST)cwi 2(CALC)b(1VAR) 3. Appuyez sur m, sélectionnez le menu RUN MAT, appuyez sur •...
6-4-7 Exécution de calculs statistiques k Représentation graphique d’une distribution de probabilité Description Vous pouvez représenter graphiquement une distribution de probabilité en utilisant le graphe manuel du mode RUN MAT. • Réglage 1. Depuis le menu principal, accédez au mode RUN MAT.
Page 283
6-4-8 Exécution de calculs statistiques Exemple Tracer le graphe de probabilité P (0,5) Procédure 1 m RUN • 2 K6(g)6(g)2(SKTCH)b(Cls)w 2(SKTCH)e(GRPH)b(Y=) 3 K6(g)1(PROB)f(P()a.fw Ecran de résultat 19990401...
7-1-1 Utilisation du mode CAS (Système d’algèbre informatique) 7-1 Utilisation du mode CAS (Système d’algèbre informatique) Sur le menu principal, sélectionnez l’icône CAS pour accéder au mode CAS. L’illustration suivante montre les touches qui peuvent être utilisées dans le mode CAS. COPY PASTE H-COPY...
7-1-2 Utilisation du mode CAS (Système d’algèbre informatique) Si tout le résultat ne rentre pas dans l’écran, utilisez les touches de curseur pour le faire défiler. k Saisie des données de listes Liste: {élément, élément, … , élément} • Les éléments doivent être séparés par des virgules et l’ensemble des éléments doit être à l’intérieur {d’accolades}.
Page 287
7-1-3 Utilisation du mode CAS (Système d’algèbre informatique) k Saisie des données de vecteurs Vecteur: [composante, composante, …, composante] • Les composantes doivent être séparées par des virgules, et l’ensemble des composantes doit être à l’intérieur de [crochets]. • Vous pouvez saisir des valeurs numériques et des expressions comme composantes des vecteurs.
7-1-4 Utilisation du mode CAS (Système d’algèbre informatique) k k k k k Saisie manuelle de formules et de paramètres Vous pouvez utiliser ensemble les menus de fonctions, la touche K et la touche J pour saisir des formules et des paramètres, comme indiqué ci-dessous. •...
Page 289
7-1-5 Utilisation du mode CAS (Système d’algèbre informatique) Exemple Affecter M à la ligne 1 et la colonne 2 de la variable A lorsque la 1 2 3 matrice lui est affectée. X Y Z ah(M)aav(A) !+( [ )b,c!-( ] )w Exemple Rappeler la valeur de la variable A lorsque la liste {X, Y, Z} lui est affectée.
7-1-6 Utilisation du mode CAS (Système d’algèbre informatique) k Mémoire de fonctions et mémoire de graphes La mémoire de fonctions permet de stocker des fonctions pour un rappel ultérieur. La mémoire de graphes permet de stocker des graphes dans la mémoire. Appuyez sur la touche J et indiquez le nom du graphe.
7-1-7 Utilisation du mode CAS (Système d’algèbre informatique) k Mémoire de dernier résultat (Ans) et calcul continu La mémoire de dernier résultat (Ans) et le calcul continu peuvent être utilisés comme pour les calculs standard. Dans le mode Algèbre, vous pouvez même stocker des formules dans la mémoire de dernier résultat.
7-1-8 Utilisation du mode CAS (Système d’algèbre informatique) Paramètres SET UP u u u u u Angle ... Définition de l’unité d’angle • {Deg}/{Rad} ... {degré}/{radian} u u u u u Answer Type ... Définition de la plage de résultat •...
7-1-9 Utilisation du mode CAS (Système d’algèbre informatique) u Pour sauvegarder l’historique d’un calcul dans la mémoire de solutions (Sauvegarde) Sur l’écran de mémoire de solutions initial, appuyez sur 1(SAVE). Appuyez sur 1(YES) pour sauvegarder l’historique du calcul dans la mémoire de solutions. L’écran de mémoire de solutions initial se rétablit par une pression de i.
7-1-10 Utilisation du mode CAS (Système d’algèbre informatique) u Pour afficher le contenu de la mémoire de solutions (Afficher mémoire) Sur l’écran de mémoire de solutions initial, appuyez sur 6(DISP). L’expression et le résultat les plus anciens s’affichent. La ligne inférieure indique le nombre de solutions enregistrées.
Page 295
7-1-11 Utilisation du mode CAS (Système d’algèbre informatique) Liste des commandes algébriques Les abréviations utilisées dans cette section sont les suivantes. • Exp ... Expression (valeur, formule, variable, etc.) • Eq ... Equation • Ineq ... Inéquation • List ... Liste •...
Page 296
7-1-12 Utilisation du mode CAS (Système d’algèbre informatique) u solve Fonction: Résout une équation. Syntaxe: solve( Exp [,variable] [ ) ] solve( {Exp-1,..., Exp-n}, {variable-1,...,variable-n} [ ) ] Exemple Résoudre AX + B = 0 pour X 1(TRNS)e(solve)av(A)v+ – B al(B)!.(=)aw Exemple Résoudre l’équation linéaire simultanée 3X + 4Y = 5, 2X –...
Page 297
7-1-13 Utilisation du mode CAS (Système d’algèbre informatique) u trigToExp (trigToE) Fonction: Transforme une fonction trigonométrique ou hyperbolique en une fonction exponentielle. Syntaxe: trigToExp( {Exp/List/Mat/Vect} [ ) ] Exemple Convertir cos(iX) en fonction exponentielle — 1(TRNS)f(TRIG)d(trigToE)c!a(i)vw X – –X ) / 2 trigToExp( sinh X ) u expToTrig (expToT) Fonction: Convertit une fonction exponentielle en une fonction trigonométrique ou...
Page 298
7-1-14 Utilisation du mode CAS (Système d’algèbre informatique) u combine (combin) Fonction: Réduit une fraction. Syntaxe: combine( {Exp/Eq/Ineq/List/Mat/Vect} [ ) ] Exemple Réduire la fraction (X + 1) / (X + 2) + X (X + 3) 1(TRNS)h(combin)(v+b)/ X 3 + 5X 2 + 7X + 1 (v+c)+v(v+dw X + 2 combine( 1/2 + 1/3 )
Page 299
7-1-15 Utilisation du mode CAS (Système d’algèbre informatique) u cExpand (cExpnd) Fonction: Développe la racine X du nombre imaginaire. Syntaxe: cExpand( {Exp/Eq/Ineq/List/Mat/Vect} [ ) ] Exemple Développer 1(TRNS)v(cExpnd)!x( )c!a(i)w u approx Fonction: Produit une approximation numérique pour une expression Syntaxe: approx( {Exp/Eq/Ineq/List/Mat/Vect} [ ) ] Exemple Obtenir une valeur numérique pour 2 1(TRNS)l(approx)!x(...
Page 300
7-1-16 Utilisation du mode CAS (Système d’algèbre informatique) u diff Fonction: Différentie un expression. Syntaxe:diff( {Exp/List} [, variable, ordre, dérivée ] [ ) ] diff( {Exp/List}, variable [, ordre, dérivée ] [ ) ] diff( {Exp/List}, variable, ordre [, dérivée ] [ ) ] Différentier X 6 par rapport à...
Page 301
7-1-17 Utilisation du mode CAS (Système d’algèbre informatique) u Σ Fonction: Calcule une somme. Syntaxe: Σ( {Exp/List}, variable, valeur initiale, valeur finale [ ) ] Calculer la somme lorsque la valeur de X dans X 2 change de X = 1 à Exemple X = 10 2(CALC)e(Σ)vx,v,b,baw...
Page 302
7-1-18 Utilisation du mode CAS (Système d’algèbre informatique) u tanLine (tanLin) Fonction: renvoie l’expression pour une tangente. Syntaxe: tanLine( {Exp/List}, variable, valeur de la variable au point de tangence [ ) ] Déterminer l’expression pour la tangente à X 3 lorsque X = 2 Exemple 2(CALC)i(tanLin)vMd,v,cw 12X –...
Page 303
7-1-19 Utilisation du mode CAS (Système d’algèbre informatique) u lcm Fonction: Calcule le plus petit commun multiple de deux expressions. Syntaxe: lcm( {Exp/List}, {Exp/List} [ ) ] Obtenir le plus petit commun multiple de X 2 – 1 et X 2 + 2X – 3 Exemple 2(CALC)l(lcm)vx-b, X 3 + 3X 2 –...
Page 304
7-1-20 Utilisation du mode CAS (Système d’algèbre informatique) u exchange (exchng) Fonction: Echange les éléments des côtés droit et gauche. Syntaxe: exchange( {Eq/Ineq/List} [ ) ] Exemple Echanger les éléments gauche et droit de 3 > 5X – 2Y 3(EQUA)f(exchng)d3(EQUA)b(INEQUA)b(>) fa+(X)-ca-(Y)w 5X –...
Page 305
7-1-21 Utilisation du mode CAS (Système d’algèbre informatique) u absExpand (absExp) Fonction: Divise une expression contenant une valeur absolue en deux expressions. Syntaxe: absExpand( {Eq/Ineq} [ ) ] Exemple Décomposer la valeur absolue de | 2X – 3 | = 9 3(EQUA)j(absExp)K5(Abs)( 2X –...
Page 306
7-1-22 Utilisation du mode CAS (Système d’algèbre informatique) u clear (clrVar) , θ ).* Fonction: Supprime le contenu d’une équation particulière (A à Z, Syntaxe: clear( variable [ ) ] clear( {liste de variables} [ ) ] Exemple Supprimer le contenu de la variable A 6(g)1(CLR)b(clrVar)av(A)w Exemple Supprimer le contenu des variables X, Y et Z...
7-1-23 Utilisation du mode CAS (Système d’algèbre informatique) k Commandes de calculs avec listes [OPTN]-[LIST] u Dim Fonction: Donne la dimension d’une liste. Syntaxe: Dim List Exemple Déterminer la dimension de la liste {1, 2, 3}. K1(LIST)b(CALC)b(Dim)!*( { )b,c,d !/( } )w u Min Fonction: Donne la valeur minimale d’une expression ou les éléments d’une liste.
Page 308
7-1-24 Utilisation du mode CAS (Système d’algèbre informatique) u Max Fonction: Donne la valeur maximale d’une expression ou les éléments d’une liste. Syntaxe: Max( {List/Exp} [ ) ] Max( {List|Exp}, {List/Exp} [ ) ] Exemple Déterminer la valeur maximale des éléments de la liste {1, 2, 3}. K1(LIST)b(CALC)d(Max)!*( { )b,c,d !/( } )w Exemple...
Page 309
7-1-25 Utilisation du mode CAS (Système d’algèbre informatique) Exemple Déterminer la moyenne des éléments de la liste {1, 2, 3} lorsque leurs fréquences sont {3, 2, 1}. K1(LIST)b(CALC)e(Mean)!*( { )b,c,d !/( } ),!*( { )d,c,b!/( } )w u Median Fonction: Donne la médiane des éléments d’une liste. Syntaxe: Median( List [ ) ] Median( List, List [ ) ] La liste doit contenir des valeurs ou des expressions mathématiques seulement.
Page 310
7-1-26 Utilisation du mode CAS (Système d’algèbre informatique) u Prod Fonction: Donne le produit des éléments d’une liste. Syntaxe: Prod List La liste doit contenir des valeurs ou des expressions mathématiques seulement. Les équations et les inégalités ne sont pas autorisées. Exemple Déterminer le produit des éléments de la liste {2, 3, 4}.
Page 311
7-1-27 Utilisation du mode CAS (Système d’algèbre informatique) u A List Fonction: Donne la liste dont les éléments sont la différence entre les éléments d’une autre liste. Syntaxe: A A A A A List List La liste doit contenir des valeurs ou des expressions mathématiques seulement. Les équations et les inégalités ne sont pas autorisées.
Page 312
7-1-28 Utilisation du mode CAS (Système d’algèbre informatique) u Seq Fonction: Génère une liste à partir d’une expression contenant une suite numérique. Syntaxe: Seq( Exp, variable, valeur initiale, valeur finale, [incrément] [ ) ]. Si vous ne spécifiez pas d’incrément, l’incrément 1 sera utilisé. Exemple Générer une liste en fonction de l’expression : valeur A, valeur finale 3A, incrément A.
Page 313
7-1-29 Utilisation du mode CAS (Système d’algèbre informatique) u SortA Fonction: Trie les éléments d’une liste dans l’ordre ascendant. Syntaxe: SortA( List [ ) ] La liste doit contenir des valeurs ou des expressions mathématiques seulement. Les équations et les inégalités ne sont pas autorisées. Exemple Trier les éléments de la liste {1, 5, 3} dans l’ordre ascendant.
Page 314
7-1-30 Utilisation du mode CAS (Système d’algèbre informatique) u List→Mat (L→Mat) Fonction: Convertit les listes en matrice. Syntaxe: List→Mat( List [, ... ,List ] [ ) ] Exemple Convertir la liste {3, 5} et la liste {2, 4} en une matrice. K1(LIST)d(LIST→)b(L→Mat)!*( { )d,f !/( } ),!*( { )c,e!/( } )w u List→Vect (L→Vect)
Page 315
7-1-31 Utilisation du mode CAS (Système d’algèbre informatique) k Commandes de calculs matriciels [OPTN]-[MAT] u Dim Fonction: Donne la dimension d’une matrice. Syntaxe: Dim Mat Exemple Déterminer la dimension de la matrice suivante. 1 2 3 4 5 6 K2(MAT)b(CALC)b(Dim)!+( [ )!+( [ ) b,c,d!-( ] )!+( [ )e,f,g !-( ] )!-( ] )w { 2, 3 }...
Page 316
7-1-32 Utilisation du mode CAS (Système d’algèbre informatique) u EigVc Fonction: Donne le vecteur propre d’une matrice. Syntaxe: EigVc Mat Exemple Déterminer le vecteur propre de la matrice suivante. K2(MAT)b(CALC)e(EigVc) !+( [ )!+( [ )d,e !-( ] )!+( [ ) [ 0.894427191 –...
Page 317
7-1-33 Utilisation du mode CAS (Système d’algèbre informatique) u Rref Fonction: Donne la forme échelonnée réduite des lignes d’une matrice. Syntaxe: Rref Mat Exemple Déterminer la forme échelonnée réduite des lignes de la matrice suivante. – 2 – 2 – 6 1 –...
Page 318
7-1-34 Utilisation du mode CAS (Système d’algèbre informatique) u LU Fonction: Donne la résolution LU d’une matrice. Syntaxe: LU (Mat, mémoire inférieure, mémoire supérieure) Exemple Déterminer la résolution LU de la matrice suivante. 6 12 18 5 14 31 3 8 18 La matrice inférieure est affectée à...
Page 319
7-1-35 Utilisation du mode CAS (Système d’algèbre informatique) u Augment (Augmnt) Fonction: Combine deux matrices. Syntaxe: Augment( Mat, Mat [ ) ] Exemple Combinez les deux matrices suivantes. K2(MAT)c(CREATE)c(Augmnt)!+( [ )!+( [ ) b,c!-( ] )!+( [ )d,e !-( ] )!-( ] ),!+( [ )!+( [ ) f,g!-( ] )!+( [ )h,i 1 2 5 6 !-( ] )!-( ] )w...
Page 320
7-1-36 Utilisation du mode CAS (Système d’algèbre informatique) Créer un matrice 2 × 3 dont toutes les entrées sont X. Exemple K2(MAT)c(CREATE)e(Fill)v,c,dw X X X X X X u SubMat Fonction: Extraie une partie spécifique d’une matrice pour la mettre dans une autre matrice.
Page 321
7-1-37 Utilisation du mode CAS (Système d’algèbre informatique) u Diag Fonction: Extraie les éléments en diagonale d’une matrice. Syntaxe: Diag Mat Exemple Extraire les éléments en diagonale de la matrice suivante. K2(MAT)c(CREATE)g(Diag)!+( [ )!+( [ ) b,c!-( ] )!+( [ )d,e !-( ] )!-( ] )w [ 1 4 ] u Mat→List (M→List)
Page 322
7-1-38 Utilisation du mode CAS (Système d’algèbre informatique) u Swap Fonction: Echange deux rangées en un matrice. Syntaxe: Swap Mat, numéro de ligne 1, numéro de ligne 2 Exemple Echanger la ligne 1 et la ligne 2 de la matrice suivante. K2(MAT)e(ROW)b(Swap)!+( [ )!+( [ ) b,c!-( ] )!+( [ )d,e !-( ] )!-( ] ),b,cw...
Page 323
7-1-39 Utilisation du mode CAS (Système d’algèbre informatique) u Row+ Fonction: Ajoute une ligne d’une matrice à une autre ligne. Syntaxe: Row+( Mat, numéro de ligne 1, numéro de ligne 2 [ ) ] Exemple Ajouter la ligne 1 de la matrice suivante à la ligne 2. K2(MAT)e(ROW)e(Row+)!+( [ ) !+( [ )b,c!-( ] )!+( [ ) d,e!-( ] )!-( ] ),b,cw...
Page 324
7-1-40 Utilisation du mode CAS (Système d’algèbre informatique) k Commandes de calculs vectoriels [OPTN]-[VECT] u Dim Fonction: Donne la dimension d’un vecteur. Syntaxe: Dim Vect Exemple Déterminer la dimension du vecteur (1 2 3). K3(VECT)b(CALC)b(Dim)!+( [ )b,c,d !-( ] )w u CrossP Fonction: Donne le produit externe de deux vecteurs.
Page 325
7-1-41 Utilisation du mode CAS (Système d’algèbre informatique) u UnitV Fonction: Donne la taille 1 à un vecteur. Syntaxe: UnitV Vect Exemple Donner la taille 1 au vecteur (1 2 3). K3(VECT)b(CALC)f(UnitV) !+( [ )b,c,d 3 14 !-( ] )w u Angle Fonction: Donne l’angle formé...
Page 326
7-1-42 Utilisation du mode CAS (Système d’algèbre informatique) u Vect→List (V→List) Fonction: Convertit un vecteur en une liste. Syntaxe: Vect→List Vect Exemple Convertir le vecteur (3 2) en une liste. K3(VECT)d(VECT→)b(V→List)!+( [ )d,c !-( ] )w { 3, 2 } u Vect→Mat (V→Mat) Fonction: Convertit les vecteurs en une matrice.
7-2-1 Précautions concernant le mode CAS 7-2 Précautions concernant le mode CAS • Si une opération algébrique ne peut pas être effectuée pour une raison ou une autre, l’expression originale restera affichée. • L’exécution d’une opération algébrique peut durer très longtemps. L’absence d’affichage immédiat du résultat ne signifie pas obligatoirement que la calculatrice fonctionne mal.
Chapitre Programmation Etapes de la programmation de base Touches de fonction du mode de programmation Edition du contenu d’un programme Gestion de fichiers Guide des commandes Utilisation des fonctions de la calculatrice dans un programme Liste des commandes de programmation Bibliothèque de programmes Cette calculatrice a environ 144 koctets de mémoire.
8-1-1 Etapes de la programmation de base 8-1 Etapes de la programmation de base Description Les commandes et les calculs sont exécutés dans l’ordre, tout comme les instructions multiples d’un calcul manuel. Réglage 1. Depuis le menu principal, accédez au mode PRGM. A ce moment, une liste de programmes apparaît.
Page 330
8-1-2 Etapes de la programmation de base Exemple 1 Calculer l’aire (cm ) et le volume (cm ) de trois octaèdres dont les côtés mesurent 7, 10 et 15 cm Stockez la formule sous le nom de fichier OCTA. Les formules utilisées pour le calcul de l’aire S et du volume V d’un octaèdre régulier dont la longueur d’un côté...
8-2-1 Touches de fonction du mode de programmation 8-2 Touches de fonction du mode de programmation • {NEW} ... {nouveau programme} u Lorsque vous enregistrez un nom de fichier • {RUN}/{BASE} ... entrée de programme {calcul général}/{base numérique} Q } ... {enregistrement d’un mot de passe} •...
Page 332
8-2-2 Touches de fonction du mode de programmation u Lorsque vous écrivez un programme —— 2(BASE) • {JUMP}/{SRC} • {d~o} ... saisie de valeurs {décimales}/{hexadécimales}/{binaires}/{octales} • {LOG} ... {opérateurs logiques} • {DISP} ... conversion de la valeur affichée en valeur {décimale}/{hexadécimale}/{binaire}/ {octale} •...
8-3-1 Edition du contenu d’un programme 8-3 Edition du contenu d’un programme k Mise au point d’un programme (débogage) Un problème apparaissant dans un programme et l’empêchant de se dérouler normalement est appelé un “bogue” et l’élimination de ce problème est appelé “débogage”. Les symptômes suivants indiquent que votre programme contient une erreur (un bogue) et qu’une mise au point est nécessaire.
8-3-2 Edition du contenu d’un programme k Utilisation d’un programme existant pour la création d’un nouveau programme Vous pouvez écrire un nouveau programme à partir d’un programme déjà existant. Rappelez simplement ce programme, effectuez les changements nécessaires puis exécutez le programme. Exemple 2 Utiliser le programme OCTA (page 8-1-2) pour créer un programme qui calcule l’aire (cm...
Page 335
8-3-3 Edition du contenu d’un programme Modifions maintenant OCTA pour obtenir le programme TETRA. 1. Changez d’abord le nom. 6(g)2(REN)ATETRAw 2. Changez ensuite le contenu. 2(EDIT) eeeeDD cdDbc 3. Mettons maintenant le programme en route. 1(EXE) ou w hw(Valeur de A) wbaw wbfw 19990401...
8-3-4 Edition du contenu d’un programme k Recherche de données à l’intérieur d’un programme Exemple Rechercher la lettre “A” dans le programme nommé OCTA 1. Rappeler le programme. 2. Appuyez sur 2(SRC) ou w et saisissez les données que vous recherchez. 2(SRC) av(A) 3.
8-4-1 Gestion de fichiers 8-4 Gestion de fichiers k Recherche d’un fichier u Pour localiser un fichier par ses initiales Exemple Faire une recherche par initiales pour rappeler le programme nommé OCTA 1. Quand la liste de programmes est à l’écran, appuyez sur 6(g)1(SRC) et saisissez les premiers caractères du fichier souhaité.
8-4-2 Gestion de fichiers k k k k k Edition d’un nom de fichier Exemple Remplacer le nom de fichier TRIANGLE par ANGLE 1. Quand la liste de programmes est à l’écran, utilisez f et c pour amener la surbrillance sur le fichier dont vous voulez changer le nom, puis appuyez sur 6(g)2(REN).
• Il n’est pas nécessaire d’indiquer le code d’accès pour lancer un programme. Exemple Créer un fichier de programme sous le nom AREA et le protéger par le code CASIO 1. Quand la liste de programmes est à l’écran, appuyez sur 3(NEW) pour enregistrer le nom de fichier du nouveau programme.
Page 340
Rappel d’un programme protégé par un code d’accès Exemple Rappeler le fichier nommé AREA qui est protégé par le code d’accès CASIO 1. Dans la liste de programmes, utilisez f et c pour amener la surbrillance sur le nom du programme que vous voulez rappeler.
Page 341
8-5-1 Guide des commandes 8-5 Guide des commandes k Index des commandes Break ....................... 8-5-6 ClrGraph ....................... 8-5-11 ClrList ......................8-5-11 ClrText ......................8-5-12 ClrMat ......................8-5-12 DispF-Tbl, DispR-Tbl ..................8-5-12 Do~LpWhile ..................... 8-5-5 DrawDyna ..................... 8-5-12 DrawFTG-Con, DrawFTG-Plt ................ 8-5-13 DrawGraph ....................8-5-13 DrawR-Con, DrawR-Plt .................
8-5-2 Guide des commandes Les conventions utilisées dans cette section pour la description des différentes commandes sont les suivantes. Texte en caractères gras ..Les commandes et autres paramètres qui doivent toujours être saisis sont en caractères gras. {Accolades} ......Les accolades sont utilisées pour indiquer un certain nombre de paramètres dont un doit être sélectionné...
8-5-3 Guide des commandes ^ ^ ) Commande de sortie (^ Fonction: Affiche un résultat intermédiaire pendant l’exécution d’un programme. Description: • Cette commande interrompt momentanément l’exécution d’un programme et affiche un texte en caractères alphabétiques ou le résultat du calcul précédant immédiatement cette commande.
8-5-4 Guide des commandes k Commandes de boucles et branchements conditionnels (COM) • Définissons a, b, c, d, e... comme étant des instructions. • Les séparations entre les instructions peuvent être “_”, “:” ou “^”. Dans les exemples ci-dessous nous utiliserons “:”. •...
Page 345
8-5-5 Guide des commandes Description: • La valeur par défaut de l’incrément est 1. • La définition d’une valeur initiale inférieure à la valeur finale et d’un incrément positif incrémente la variable de référence à chaque exécution. La définition d’une valeur initiale supérieure à...
8-5-6 Guide des commandes While~WhileEnd Fonction: Cette commande répète des commandes particulières entre While et WhileEnd tant que sa condition est vraie. Le test est réallsé avant les instructions. Syntaxe: While <condition> <instruction> WhileEnd expression numérique Paramètres: expression Description: • Cette commande répète les commandes contenues dans la boucle tant que sa condition est vraie.
Page 347
8-5-7 Guide des commandes Prog Fonction: Cette commande définit l’exécution d’un autre programme en tant que sous- programme. Dans le mode RUN MAT, cette commande exécute un nouveau programme. • Syntaxe: Prog ”nom de fichier” Exemple: Prog ”ABC” Description: • Même quand cette commande se trouve à l’intérieur d’une boucle, elle interrompt immédiatement la boucle et démarre le sous-programme.
Page 348
8-5-8 Guide des commandes Return Fonction: Cette commande fait revenir d’un sous-programme au programme d’origine. Syntaxe: Return Description: L’exécution de la commande de retour à l’intérieur du programme principal interrompt l’exécution du programme. L’exécution de la commande de retour à l’intérieur d’un sous- programme interrompt le sous-programme et fait revenir au programme principal, à...
8-5-9 Guide des commandes k Commandes de saut (JUMP) Fonction: Cette commande est un saut avec compteur qui décrémente la valeur d’une variable de référence d’une unité, puis saute quand la valeur de la variable est égale à zéro. Syntaxe: Valeur de la variable G G G G G Dsz <nom de la variable>...
Page 350
8-5-10 Guide des commandes Goto~Lbl Fonction: Cette commande effectue un saut inconditionnel à un endroit défini. Syntaxe: Goto <nom de label> ~ Lbl <nom de label> Paramètres: nom de label : valeur (0 à 9) variable (A à Z, r, θ ) Description: •...
8-5-11 Guide des commandes Fonction: Cette commande est un saut avec compteur qui incrémente la valeur de la variable de référence d’une unité, puis saute quand la valeur de la variable est égale à zéro. Syntaxe: Valeur de la variable G G G G G Isz <nom de la variable>...
8-5-12 Guide des commandes ClrText Fonction: Cette commande efface le texte de l’écran. Syntaxe: ClrText Description: Cette commande efface le texte de l’écran pendant l’exécution du programme. ClrMat Fonction: Cette commande supprime les données de matrice. Syntaxe: ClrMat <nom de matrice> ClrMat Paramètres: nom de matrice : A à...
8-5-13 Guide des commandes DrawFTG-Con, DrawFTG-Plt Aucun paramètre Fonction: Cette commande utilise les valeurs d’une table pour représenter graphiquement une fonction. Description: • Cette commande trace un graphe en fonction des conditions actuelles. • DrawFTG-Con produit un graphe à points connectés, tandis que DrawFTG-Plt produit un graphe à...
8-5-14 Guide des commandes DrawRΣ-Con, DrawRΣ-Plt Aucun paramètre Fonction: Ces commandes utilisent les valeurs d’une table pour représenter graphiquement une expression de récurrence avec Σ ou Σ (Σ ) connecteur comme ordonnée et comme abscisse. Description: • Ces commandes représentent graphiquement des expressions récurrentes avec Σ (Σ...
8-5-15 Guide des commandes k Commandes d’entrée/sortie (I/O) Getkey Fonction: Cette commande se comporte comme une variable qui prend la valeur correspondant au code de la dernière touche activée. Syntaxe: Getkey Exemple: Se brancher sur les Lbl 1, Lbl 2 ou Lbl 3, dans une boucle en appuyant sur les touches 1, 2 ou 3 Lbl 0...
← (21, 7) Exemple: Cls_ Locate 7, 1, ”CASIO FX” Ce programme affiche le texte “CASIO FX” au centre de l’écran. • Dans certains cas, la commande ClrText doit être exécutée avant de mettre le programme précédent en route. 19990401...
à un analyseur (CASIO Data Analyzer). Syntaxe: Recevoir (<données>) / Envoyer (<données>) Description: • Cette commande reçoit des données et envoie des données à un analyseur (CASIO Data Analyzer). • Les types de données suivantes peuvent être reçues (envoyées) par cette commande.
8-5-18 Guide des commandes k Opérateurs relationnels avec saut conditionnel (REL) , >, <, ≥, ≤ G G G G G Fonction: Les opérateurs relationnels sont utilisés communément avec la commande de saut conditionnel. Syntaxe: <côté gauche> <opérateur relationnel> <côté droit> Paramètres: , θ...
Il suffit de mettre un texte entre guillemets pour l’inclure dans un programme. Ce texte sera affiché pendant l’exécution du programme, ce qui signifie que vous pouvez ajouter des labels pour entrer des messages et résultats. Programme Affichage ”CASIO” CASIO ? → X ”X =” ? → X X = ? •...
8-6-2 Utilisation des fonctions de la calculatrice dans un programme ` ` Row) u Pour calculer un produit scalaire (` Exemple 2 Calculer le produit scalaire de la ligne 2 de la matrice dans l’exemple 1, en le multipliant par 4 La syntaxe utilisée pour ce programme est la suivante.
8-6-3 Utilisation des fonctions de la calculatrice dans un programme u Pour additionner deux lignes (Row+) Exemple 4 Additionner la ligne 2 et la ligne 3 de la matrice citée dans l’exemple 1 La syntaxe utilisée pour ce programme est la suivante. Row+ A, 2, 3_ Lignes à...
8-6-4 Utilisation des fonctions de la calculatrice dans un programme u Syntaxe d’autres fonctions de représentation graphique • V-Window View Window <Xmin>, <Xmax>, <Xscale>, <Ymin>, <Ymax>, <Yscale>, <T θ min>, <T θ max>, <T θ pitch> StoV-Win <zone de V-Win> .... zone: 1 à 6 RclV-Win <zone de V-Win>...
Page 363
8-6-5 Utilisation des fonctions de la calculatrice dans un programme k k k k k Utilisation des fonctions de graphe dynamique dans un programme L’utilisation des fonctions de graphe dynamique dans un programme permet de répéter les tracés d’un graphe dynamique. La définition de la plage du graphe dynamique à l’intérieur d’un programme s’effectue de la façon suivante.
Page 364
8-6-6 Utilisation des fonctions de la calculatrice dans un programme k k k k k Utilisation des fonctions de table et graphe dans un programme • m PRGM w6(g)1(GRPH) L’utilisation des fonctions de table et graphe dans un programme permet de créer des tables numériques et d’effectuer des opérations graphiques.
Page 365
8-6-7 Utilisation des fonctions de la calculatrice dans un programme k k k k k Utilisation des fonctions de table et graphe de récurrence dans un programme • m PRGM w6(g)3(RECR) L’intégration de fonctions de table et graphe de récurrence dans un programme permet de créer des tables numériques et d’effectuer des opérations graphiques.
Page 366
8-6-8 Utilisation des fonctions de la calculatrice dans un programme Exemple de programme View Window 0, 1, 1, –0.2, 1, 1_ 63gc Type_ ” → ”–3 0 → R Start_ J62cb 6 → R End_ 0.01 → !J662fb 0.01 → Start_ 2fci DispR-Tbl^...
8-6-9 Utilisation des fonctions de la calculatrice dans un programme k k k k k Utilisation de la fonction de résolution dans un programme La syntaxe requise pour l’utilisation de la fonction de résolution dans un programme est la suivante. Solve( f(x), n, a, b) Limite supérieure Limite inférieure...
Page 368
8-6-10 Utilisation des fonctions de la calculatrice dans un programme Les conditions de tracé du graphe dépendent du type de graphe. Voir “Changement des paramètres d’un graphe” (page 6-1-2). • La définition typique d’un diagramme de dispersion ou d’un graphe linéaire est la suivante.
Page 369
8-6-11 Utilisation des fonctions de la calculatrice dans un programme • La définition typique d’un graphe de régression sinusoïdale est la suivante. S-Gph1 DrawOn, Sinusoidal, List 1, List 2 _ • La définition typique d’un graphe de régression logistique est la suivante. S-Gph1 DrawOn, Logistic, List 1, List 2 _ Exemple de programme ClrGraph_...
Page 370
8-6-12 Utilisation des fonctions de la calculatrice dans un programme • Calcul statistique à variable double 2-Variable List 1, List 2, List 3 Données de fréquence (Frequency) Données de l’axe y (YList) Données de l’axe x (XList) • Calcul statistique de régression LinearReg List 1, List 2, List 3 Type de Données de fréquence (Frequency)
8-7-1 Liste des commandes de programmation 8-7 Liste des commandes de programmation Programme RUN Touche [OPTN] GRPH SelOn PROB G_SelOn_ Niveau 1 Niveau 2 Niveau 3 Commande Niveau 1 Niveau 2 Niveau 3 Commande SelOff G_SelOff_ Swap Swap_ TYPE Y=TYPE LIST List List_...
Page 372
8-7-2 Liste des commandes de programmation Touche [VARS] Touches [ SHIFT ] [ VARS ] (PRGM) Touches [CTRL][F3](SET UP) Niveau 1 Niveau 2 Niveau 3 Commande Niveau 1 Niveau 2 Niveau 3 Commande Niveau 1 Niveau 2 Niveau 3 Commande V-WIN Xmin Xmin...
Page 373
8-7-3 Liste des commandes de programmation Programme BASE Touche [SHIFT][OPTN](V-Window) Touches [CTRL][F3](SETUP) Niveau 1 Niveau 2 Niveau 3 Commande Niveau 1 Niveau 2 Niveau 3 Commande Niveau 1 Niveau 2 Niveau 3 Commande V-Win ViewWindow_ StoV-Win_ RclV-Win_ Neg_ Not_ xnor xnor DISP [SHIFT][VARS](PRGM) key...
8-8-1 Bibliothèque de programmes 8-8 Bibliothèque de programmes • Vérifiez le nombre d’octets libres dans la mémoire avant d’essayer d’utiliser un programme. Nom du programme Décomposition en facteurs premiers Description Ce programme divise continuellement un nombre naturel par des facteurs jusqu’à ce que tous ses facteurs premiers soient produits.
Page 375
8-8-2 Bibliothèque de programmes egcw 19990401...
8-8-3 Bibliothèque de programmes Nom du programme Différentiation arithmétique-géométrique d’une séquence Description Après avoir saisi les termes d’une séquence 1, 2 et 3, ce programme détermine s’il s’agit d’une séquence arithmétique ou géométrique en se fondant sur les différences et taux des termes.
Page 377
8-8-4 Bibliothèque de programmes Exemple 1 Exemple 2 19990401...
Page 378
8-8-5 Bibliothèque de programmes Nom du programme Ellipse Description Ce programme affiche une table des valeurs suivantes, basée sur la saisie des foyers d’une ellipse, la somme de la distance entre les losi et les foyers et l’échelle (pas) de X. Y1: Valeurs des coordonnées de la partie supérieure de l’ellipse Y2: Valeurs des coordonnées de la partie inférieure de l’ellipse Y3: Distance entre le foyer et loci droits...
Page 379
8-8-6 Bibliothèque de programmes 19990401...
Page 380
8-8-7 Bibliothèque de programmes Nom du programme Rotation Description Ce programme trace un angle à la coordonnée définie par le sommet indiqué et le fait tourner à un angle particulier autour de ce sommet. Ce programme démontre la transformation de coordonnées à partir d’une matrice. Important! Le degré...
8-8-9 Bibliothèque de programmes Nom du programme Angles intérieurs et surface d’un triangle Description Ce programme calcule les angles intérieurs et l’aire d’un triangle défini par les coordonnées indiquées pour les angles A, B et C. Ce programme calcule les angles intérieurs et l’aire d’un triangle défini par les coordonnées des angles A, B et C.
Page 383
8-8-10 Bibliothèque de programmes awaw bwaw aw9d 19990401...
Chapitre Menu de réglages du système Utilisez le menu de réglages du système pour voir les informa- tions concernant le système et effectuer des réglages. Le menu de réglages du système permet d’effectuer les réglages suivants. • Afficher les informations concernant l’emploi de la mémoire •...
9-1-1 Utilisation du menu de réglages du système 9-1 Utilisation du menu de réglages du système A partir du menu principal, accédez au mode SYSTEM et afficher les paramètres de menu suivants. • 1(Mem) ... {affichage de l’état actuel de la mémoire et suppression des données stockées dans la mémoire} •...
9-2-1 Opérations concernant la mémoire 9-2 Opérations concernant la mémoire Utilisez le paramètre Mem (Utilisation mémoire) pour voir l’état actuel de la mémoire et supprimer certaines données mémorisées. Lorsque l’écran du mode de réglages du système est affiché, appuyez sur 1(Mem) pour faire apparaître l’écran d’utilisation de la mémoire.
9-2-2 Opérations concernant la mémoire • Pour afficher les informations concernant l’utilisation de la mémoire Utilisez f et c pour sélectionner chaque type de données et voir la quantité de mémoire (en octets) utilisée. Le tableau suivant indique tous les types de données qui apparaissent sur l’écran d’état de la mémoire.
9-3-1 Réglages du système 9-3 Réglages du système k k k k k Réglage du contraste Utilisez le paramètre (contraste) pour ajuster le contraste de l’affichage. Lorsque l’écran initial du mode de réglages du système est affiché, appuyez sur 2( pour afficher l’écran de réglage du contraste.
Page 389
9-3-2 Réglages du système k k k k k Réglage de la langue du système Utilisez le paramètre Lang pour sélectionner la langue d’affichage pour les applications intégrées. Vous pouvez aussi utiliser ajouter d’autres langues. 1. Lorsque l’écran initial du mode de réglages du système est affiché, appuyez sur 4(Lang) pour afficher l’écran de réglage de la langue.
9-4-1 Initialisation 9-4 Initialisation 1. Lorsque l’écran initial du mode de réglages du système est affiché, appuyez sur 5(Reset) pour afficher l’écran d’initialisation. • 1(S/U) ... {initialisation de la configuration} • 2(Main) ... {suppression des données de la mémoire principale} •...
Vous pouvez aussi utiliser le câble pour relier la calculatrice à une imprimante d’étiquettes CASIO. Pour le transfert de données entre une calculatrice et un ordinateur, vous devrez vous procurer le kit de connexion CASIO proposée en option. 10-1 Connexion de deux calculatrices 10-2 Connexion de la calculatrice à...
10-1-1 Connexion de deux calculatrices 10-1 Connexion de deux calculatrices Les opérations suivantes expliquent comment raccorder deux calculatrices avec le câble de liaison fourni comme accessoire standard. u u u u u Pour raccorder deux calculatrices 1. Vérifiez que les deux calculatrices sont éteintes. 2.
10-2 Connexion de la calculatrice à une imprimante d’étiquettes CASIO Après avoir raccordé la calculatrice à une imprimante d’étiquettes CASIO avec un câble, vous pouvez utiliser l’imprimante d’étiquettes pour imprimer les données figurant sur l’écran de la calculatrice (Voir 10-6 Envoi d’une copie d’écran). Voir le mode d’emploi de l’imprimante d’étiquettes pour les détails à...
Pour transférer des données et des images d’écran entre l’appareil et un ordinateur, vous devez les raccorder à l’aide d’un kit de connexion optionnel CASIO. Pour les détails sur le fonctionnement, les types d’ordinateurs pouvant être connectés et les restrictions concernant le matériel, voir le mode d’emploi fourni avec kit de connexion.
10-4-1 Communication des données 10-4 Communication des données A partir du menu principal, accédez au mode LINK. Le menu principal servant à la communication de données apparaît à l’écran. • {TRNS}/{Recv} ... menu de {réglages d’émission}/{réglages de réception} Les paramètres de communication sont déterminés par les réglages suivants. •...
10-4-2 Communication des données Machine émettrice Pour configurer la calculatrice pour la transmission de données, appuyez sur 1(TRNS) quand le menu principal destiné à la communication de données est affiché. Appuyez sur la touche de nombre qui correspond au type de données que vous voulez envoyer.
Page 397
10-4-3 Communication des données uPour exécuter une transmission Après avoir sélectionné le type de données à envoyer, appuyez sur 6(Trns). Un message apparaît vous demandant de confirmer l’opération. • w(Oui) ... envoie des données • i(Non) ... retour à l’écran de sélection Appuyez sur w(Oui) pour envoyer les données.
10-4-4 Communication des données u Pour transmettre des données de sauvegarde Cette opération permet de transmettre tout le contenu de la mémoire, réglages de modes compris. Lorsque le menu de sélection du type de données à transmettre est à l’écran, appuyez sur d(Backup) pour afficher l’écran suivant.
10-5-1 Précautions lors la communication de données 10-5 Précautions lors la communication de données Les types de données que vous pouvez envoyer sont les suivants. Contrôle Contrôle du Type de données Contenu d’écrasement* code d’accès* Noms de Contenu du programme programme (Tous les programmes sont listés.) Contenu des mémoires matricielles...
Page 400
10-5-2 Précautions lors la communication de données Nom du type de données • 1(YES)... {remplace les données existantes de la machine réceptrice par les nouvelles} • 6(NO) ... {passe au type de données suivant} Avec contrôle du code d’accès: Si un fichier est protégé, un message apparaîtra pour vous demander d’entrer le code d’accès.
Procédez de la façon suivante pour envoyer la copie d’un écran directement à l’ordinateur raccordé (ou à une imprimante d’étiquettes CASIO) ou pour sauvegarder un écran dans la mémoire et l’envoyer plus tard. Les copies d’écran peuvent aussi être envoyées à une imprimante d’étiquettes CASIO.
Page 402
Pour envoyer une copie d’écran à un ordinateur ou une imprimante d’étiquettes CASIO 1. Raccordez l’appareil à l’ordinateur (ou à l’imprimante d’étiquettes CASIO). Sur l’ordinateur (ou l’imprimante d’étiquettes CASIO), effectuez les opérations nécessaires pour la réception de données.
10-7-1 Ajouts 10-7 Ajouts La capacité d’ajout permet d’installer d’autres applications et logiciels pour adapter la calculatrice à vos besoins particuliers. Les ajouts s’installent à partir d’un ordinateur par la communication de données décrite à la page 10-4-1. Les types de logiciels qui peuvent être ajoutés à la calculatrice sont les suivants. u u u u u Application ajoutée Aprés avoir installé...
10-8-1 Mode MEMORY 10-8 Mode MEMORY Cette calculatrice a deux zones mémoire séparées: une “zone active” et une “zone de stockage”. La zone active est une zone de travail où vous pouvez saisir des données, effectuer des calculs et lancer des programmes. Les données dans la zone active sont relativement protégées, mais elles peuvent être détruites lorsque les piles sont vides et lorsque vous effectuez une réinitialisation complète.
10-8-2 Mode MEMORY u Pour stocker un fichier de programme dans la zone de stockage 1. Sur l’écran initial du mode MEMORY, appuyez sur 1(PROG). • Une liste des fichiers de programme se trouvant dans la zone active apparaît.* 2. Sélectionnez le fichier de programme que vous voulez stocker. •...
10-8-3 Mode MEMORY u Pour charger un fichier de programme depuis la zone de stockage 1. Sur l’écran initial du mode MEMORY, appuyez sur 1(PROG). 2. Appuyez sur 6(STRG). • Une liste des fichiers de programme se trouvant dans la zone de stockage apparaît. * 3.
10-8-4 Mode MEMORY k Suppression de fichiers de programme Procédez de la façon suivante pour supprimer certains fichiers ou tous les fichiers se trouvant dans la zone active ou dans la zone de stockage. u Pour supprimer un fichier de programme de la zone active 1.
10-8-5 Mode MEMORY u Pour supprimer tous les fichiers de programme de la zone de stockage 1. Sur l’écran initial du mode MEMORY, appuyez sur 1(PROG). 2. Appuyez sur 6(STRG). • Une liste des fichiers de programme se trouvant dans la zone de stockage apparaît. 3.
10-8-6 Mode MEMORY u Pour rechercher un fichier de programme dans la zone de stockage Exemple Rechercher tous les fichiers de programme dans la zone de stockage dont le nom commence par la lettre “S” 1. Sur l’écran initial du mode MEMORY, appuyez sur 1(PROG). 2.
10-8-7 Mode MEMORY k Sauvegarde des données de la zone active Vous pouvez faire une sauvegarde de toutes les données se trouvant dans la zone active pour les mettre dans la zone de stockage. Vous pourrez les transférer à nouveau dans la zone active lorsque vous en aurez besoin.
10-8-8 Mode MEMORY u Pour rétablir les données de sauvegarde dans la zone active 1. Sur l’écran initial du mode MEMORY, appuyez sur 2(BACK). • Sur l’écran qui apparaît vous pouvez vérifier s’il y a ou non des données de sauvegarde dans la zone de stockage.
10-8-9 Mode MEMORY k Optimisation de la zone de stockage La zone de stockage est fragmentée après plusieurs opérations de stockage et de chargement. La fragmentation peut entraîner une indisponibilité de certains blocs de mémoire. C’est pourquoi il est conseillé d’effectuer régulièrement l’opération suivante pour optimiser la zone de stockage.
Page 413
Appendice 1 Tableau des messages d’erreur 2 Plages d’introduction 3 Spécifications α 4 Index 5 Index des touches 6 Bouton P (en cas de blocage) 7 Alimentation 19990401...
α -1-1 Tableau des messages d’erreur 1 Tableau des messages d’erreur Message Signification Mesure corrective Appuyer sur i pour afficher Erreur syntaxe • • Syntaxe incorrecte • Saisie d’une commande l’erreur et effectuer les rectifica- incorrecte tions nécessaires. Erreur math •...
Page 415
α -1-2 Tableau des messages d’erreur Message Signification Mesure corrective Erreur pile • L’exécution des calculs dépasse • Simplifier les formules pour la capacité de la pile de valeurs que la pile de valeurs numériques ou de celle de numériques ne comporte que commandes.
Page 416
α -1-3 Tableau des messages d’erreur Signification Message Mesure corrective 1 Calcul produisant un nombre 1 Sélectionner autre chose que Erreur non réel complexe lorsque Real est Real comme réglage de spécifié pour le réglage de Complex Mode. Complex Mode sur l’écran de configuration, bien que l’argument soit un nombre réel.
Page 417
α -1-4 Tableau des messages d’erreur Message Signification Mesure corrective Erreur transm • Problème de raccordement de • Vérifier le raccordement du câble ou de spécification d’un câble. paramètre pendant la communi- cation de données. Erreur • Problème de raccordement de •...
α -2-1 Plages d’introduction 2 Plages d’introduction Plage d’introduction pour les Chiffres Fonction Précision Notes solutions à nombres réels internes Cependant, pour tan En règle G G G G G 90(2 +1):DEG | < 9 × (10 (DEG) | )° générale, la π/2(2 G G G G G...
Page 419
α -2-2 Plages d’introduction Plage d’introduction pour les Chiffres Fonction Précision Notes solutions à nombres réels internes | < 1 × 10 En règle Cependant, pour tan θ : (DEG) | θ | < 9 × (10 générale, la )° | θ...
Page 420
α -2-3 Plages d’introduction Fonction Plage d’introduction Calcul Les valeurs rentrent dans les plages suivantes après la conversion: DEC: –2147483648 < < 2147483647 binaire, BIN: 1000000000000000 < octal, < 1111111111111111 (négative) décimal, 0 < < 0111111111111111 (0, positive) hexadécimal OCT: 20000000000 < <...
Connexion de la calculatrice à un Axe de la directrice ......5-11-20 ordinateur ........10-3-1 Axe de symétrie ......5-11-20 Connexion de la calculatrice à une imprimante d’étiquettes CASIO ........... 10-2-1 Contraste ........... 9-3-1 Bibliothèque de programmes .... 8-8-1 Conversion de coordonnées ... 2-4-2, 2-4-8 Binaire ..........
Page 424
α -4-2 Index Débogage ......... 8-3-1 Faible tension des piles ....1-8-2 Décimale ........... 2-7-1 Fenêtre calc ........5-2-12 Degrés/minutes/secondes ..1-2-5, 2-4-2 Fenêtre d’affichage ......5-2-1 Dépassement ........2-1-5 Fichier de programme, charger ..10-8-3 Dessin ..........5-10-1 Fichier de programme, recherche ........
Page 425
α -4-3 Index Graphe de régression linéaire ..6-3-6 Inéquation ......... 5-3-2 Graphe de régression logarithmique Ingénieur ....... 2-3-2, 2-4-11 ............ 6-3-8 Initialisation ........9-4-1 Graphe de régression logistique ..6-3-10 Inscriptions sur le clavier ....1-1-3 Graphe de régression sinusoïdale ..6-3-9 Instructions multiples ......
Page 426
α -4-4 Index Mémoire de dernier résultat ..2-2-5, 7-1-7 Mémoire de fenêtre d’affichage ..5-2-4 Octale ..........2-7-1 Mémoire de fonctions ..... 2-2-2, 7-1-6 Opérations concernant la mémoire .. 9-2-1 Mémoire de formules ......7-1-4 Opérations logiques ......2-7-4 Mémoire de graphe dynamique ..
Page 427
α -4-5 Index Programme, recherche de données Table et graphe de récurrence dans un ............ 8-3-4 programme ........8-6-7 Table numérique de la formule de récurrence ........5-9-1 Table, suppression ......5-7-7 Racine ..........5-11-9 Tableau des touches ......1-1-2 Rayon ..........
Page 428
α -4-6 Index Zone de stockage ......10-8-1 Zone d’affichage de résultat naturel . 7-1-1 Zone d’entrée ........7-1-1 Zoom ..........5-2-7 Zoom avec facteur ......5-2-9 Zoom sur cadre ........ 5-2-7 19990401 20001202...
α -5-1 Index des touches 5 Index des touches Combinée avec Touche Fonction primaire Combinée avecu COPY Sélectionne le 1 paramètre du menu Opération de copie. de fonctions. PASTE Sélectionne le 2 paramètre du menu Opération de collage. de fonctions. SET UP Sélectionne le 3 paramètre du menu...
Page 433
α -5-2 Index des touches Combinée avec Combinée avec Touche Fonction primaire Déplace le curseur vers le haut. Fait défiler l’écran. Retour à la fonc- tion précédente dans le mode de lec- ture des coordonnées. Déplace le curseur vers le bas. Fait défiler l’écran.
Page 434
α -5-3 Index des touches Combinée avec Combinée avec ! Touche Fonction primaire Saisit le chiffre 9. Saisit la lettre O. Efface le caractère à la actuelle du Permet l’insertion de carac- curseur. tères à position du curseur. Met sous tension. Efface l’affichage. Met hors tension.
Si une erreur de données se produit lorsque vous appuyez sur w, il se peut que la calculatrice fonctionne mal. Si l’écran d’erreur de données reste affiché, appuyez sur i pour éteindre la calculatrice. Apportez ensuite la calculatrice à votre revendeur ou à un service après-vente CASIO. 19990401...
α -7-1 Alimentation 7 Alimentation Cette machine est alimentée par quatre piles de taille AAA (LR03 (AM4) ou R03 (UM-4)). En plus, une pile au lithium CR2032 fournit l’alimentation de sauvegarde permettant de préserver la mémoire. Si un des messages suivants apparaît à l’écran, éteignez immédiatement la calculatrice et remplacez les piles principales ou la pile de sauvegarde de la mémoire de la façon indiquée.
α -7-2 Alimentation k Remplacement des piles Précautions: L’utilisation incorrecte de piles peut entraîner une fuite ou une explosion et risque d’endommager la calculatrice. Suivez les précautions suivantes: • S’assurer que la polarité (+)/(–) de chaque pile est correcte. • Ne pas mélanger les marques de piles. •...
Page 438
α -7-3 Alimentation 1. Appuyez sur !o(OFF) pour mettre la calculatrice hors tension. Avertissement ! * Mettez la calculatrice hors tension avant de remplacer les piles. Si vous remplacez les piles lorsqu’elle est sous tension, les données mémorisées seront effacées. 2.
α -7-4 Alimentation Pour remplacer la pile de sauvegarde * Avant de remplacer la pile de sauvegarde, assurez-vous que les piles principales ne sont pas épuisées. * N’enlevez jamais les piles d’alimentation principales et la pile de sauvegarde en même temps.
α -7-5 Alimentation 6. Essuyez les deux faces de la nouvelle pile avec un chiffon sec et doux. Mettez la pile dans la calculatrice en vous assurant que la face positive (+) est dirigée vers le haut. BACK UP 7. Remettez le couvercle du logement de la pile de sauvegarde en place sur la calculatrice et fixez-le avec la vis.
Page 441
ATTENTION COMMUNICATION ENTRE MODELES DIFFERENTS Toutes les calculatrices Graphiques Connectables CASIO peuvent échanger des données entre elles.Toutefois les procédures et moyens de liaison peuvent être différents. Il y a des limitations de transfert suivant les familles de modèles,les capacités mémoire,et les types de données.
Page 442
CASIO COMPUTER CO., LTD. 6-2, Hon-machi 1-chome Shibuya-ku, Tokyo 151-8543, Japan Agent : DEXXON DATAMEDIA / 79 av Louis Roche 92238 Gennevilliers SA0910-A...