SI 10MER
7
Installation
7.1 General Information
The following connections need to be established on the heat
pump:
Flow and return of the brine (heat source system)
Flow and return flow of the heating system
Temperature sensor
Voltage supply
7.2 Heating System Connection
ATTENTION!
Flush the heating system prior to connecting the heat pump.
Before connecting the heating water system to the heat pump,
the heating system must be flushed to remove any impurities,
residue from sealants, etc. Any accumulation of deposits in the
liquifier could cause the heat pump to completely break down.
Once the heating system has been installed, it must be filled, de-
aerated and pressure-tested.
Consideration must be given to the following when filling the sys-
tem:
Untreated filling water and make-up water must be of drink-
ing water quality (colourless, clear, free from sediments)
Filling water and make-up water must be pre-filtered (pore
size max. 5 µm).
Scale formation in hot water heating systems cannot be com-
pletely avoided, but in systems with flow temperatures below
60 °C the problem can be disregarded.
With medium and high-temperature heat pumps, temperatures
above 60 °C can be reached.
The following standard values should therefore be adhered to
concerning the filling water and make-up water (according to VDI
2035 Sheet 1):
Total alkaline earths
Total heat
in mol/m³ and/or
output in [kW]
mmol/l
up to 200
200 to 600
> 600
< 0.02
The sensors which are delivered already connected and loosely
placed in the switch box must be mounted and insulated accord-
ing to the block diagram.
Minimum heating water flow rate
The minimum heating water flow rate through the heat pump
must be assured in all operating states of the heating sys-
tem. This can be accomplished, for example, by installing either
a dual differential pressureless manifold or an overflow valve.
The procedure for adjusting an overflow valve is described in the
Chapter Start-Up.
NOTE
The use of an overflow valve is only recommended for panel heating and
a max. heating water flow of 1.3 m³/h. System faults may result if this is
not observed.
EN-6
All manuals and user guides at all-guides.com
Total
hardness in °dH
2.0
11.2
1.5
8.4
< 0.11
452232.66.38 · FD 9405
The antifreeze function of the heat pump manager is active
whenever the controller and the heat circulating pumps are ready
for operation. If the heat pump is taken out of service or in the
event of a power failure, the system has to be drained. The heat-
ing circuit should be operated with a suitable antifreeze if heat
pump systems are implemented in buildings where a power fail-
ure can not be detected (holiday home).
7.3 Heat Source Connection
The following procedure must be observed when connecting the
heat source:
Connect the brine pipe to the heat pump flow and return. The hy-
draulic integration diagram must be adhered to.
ATTENTION!
The supplied dirt trap must be inserted in the heat source inlet of the heat
pump to protect the evaporator against the ingress of impurities.
The brine liquid must be produced prior to charging the system.
The liquid must have an antifreeze concentration of at least 25 %
to ensure frost protection down to -14 °C.
Only monoethylene glycol or propylene glycol-based antifreeze
may be used.
The heat source system must be de-aerated and checked for
leaks.
ATTENTION!
The brine solution must contain at least a 25 % concentration of a
monoethylene glycol or propylene glycol-based antifreeze, which must
be mixed before filling.
NOTE
If necessary, the operating range can be extended to a brine inlet
temperature of -10 °C. In this case, the minimum brine concentration
must be adjusted to 30 %. (Freezing temperature -17 °C)
NOTE
A suitable de-aerator (micro bubble air separator) must be installed in
theheat source circuit by the customer.
www.dimplex.de