IRIS – Iris EF Digital Infrared Radiator
39
4.2.5 Surface of walls, ceilings, floors and curtains
Infrared light, like visible light, is reflected by light, smooth surfaces and absorbed by dark, rough
surfaces. Reflected light generally has a positive influence on signal transmission and does not cause
any disruptive form of interference. In rooms with light, smooth surfaces, a lower radiator power is thus
required than in rooms with dark, textured surfaces (carpets, curtains).
4.2.6 Radiation area of the Iris EF infrared radiator
The frequencies of the carrier waves of the control unit and the output power of the infrared radiator
are relevant to the size of the area covered by the radiator. The higher the channel used in the control
unit (with corresponding carrier frequency), the smaller the area covered by the radiator since this is
reduced proportionately. This deficit can be compensated for by using additional infrared radiators and
by increasing the absolute radiation output accordingly. For optimum transmission, even at higher
carrier frequencies, delegates should sit directly in the radiation area as reflected signals may be too
weak.
The area covered by the radiator depending on the radiator position
Flat wall mounting
High wall mounting
Ceiling mounting
15° installation
45° installation
90° installation