Im p o s t a z i o n e
T ip o d i c ib o
s e l e z io n a t a
1 T r a d iz io n a l e
A n a tr a
A r r o s to d i v it e llo o m a n z o
A r r o s to d i m a ia le
B is c o t ti ( d i fr o lla )
C r o s ta t e
2 P a s t ic c e r ia
C r o s ta t e
T o r ta d i fr u tta
P lu m - c a k e
P a n d i s p a g n a
C r e p s fa r c ite ( s u 2 r ip ia n i)
C a k e p ic c o li ( s u 2 r ip ia n i)
S a la t in i d i s fo g lia a l
fo r m a g g io ( s u 2 r ip ia n i)
B ig n è ( s u 3 r ip ia n i)
B is c o t ti ( s u 3 r ip ia n i)
M e r in g h e ( s u 3 r ip ia n i)
3 F a s t
S u r g e la t i
c o o k in g
P iz z a
M is to z u c c h in e e g a m b e r i
in p a s te lla
T o r ta r u s t ic a d i s p in a c i
P a n z e r o tt i
L a s a g n e
P a n e tt i d o r a ti
B o c c o n c in i d i p o llo
P r e c o t t i
A li d i p o llo d o r a te
C ib i F r e s c h i
B is c o t ti ( d i fr o lla )
P lu m - c a k e
S a la t in i d i s fo g lia a l
fo r m a g g io
4 M u lt ic o t t u r a
P iz z a
( s u 2 r ip ia n i)
L a s a g n e
A g n e llo
P o llo a r r o s to + p a t a te
S g o m b r o
P lu m - c a k e
B ig n è
( s u 2 r ip ia n i)
B is c o t ti
( s u 2 r ip ia n i
P a n d i s p a g n a
)
r ip ia n o
P a n d i s p a g n a
T o r te s a la te
5 P iz z a
P iz z a
A r r o s to d i v it e llo o m a n z o
P o llo
6 G r ill
S o g lio le e s e p p ie
S p ie d in i d i c a la m a r i e
g a m b e r i
F ile tto d i m e r lu z z o
V e r d u r e a lla g r ig lia
B is t e c c a d i v ite llo
C o t o le t te
H a m b u r g e r
S g o m b r i
T o a s t
C o n g i r a r r o s t o ( o v e
p r e s e n te )
V ite llo a llo s p ie d o
P o llo a llo s p ie d o
A g n e llo a llo s p ie d o
7 G r a t in
P o llo a lla g r ig lia
S e p p ie
C o n g i r a r r o s t o ( o v e
p r e s e n te )
V ite llo a llo s p ie d o
A g n e llo a llo s p ie d o
P o llo ( a llo s p ie d o ) +
p a t a te ( s u lla le c c a r d a )
N B : i t e m p i d i c o ttu r a s o n o in d ic a tiv i e p o s s o n o e s s e r e m o d ific a t i in b a s e a i p r o p r i g u s ti p e r s o n a li. N e lle c o t tu r e a l
G r ill o G r a t in , la le c c a r d a v a p o s ta s e m p r e a l 1 ° r ip ia n o a p a r tir e d a l b a s s o .
P e s o
P o s i z i o n e
( K g )
d e ll a g r i g l ia
r i s p e t t o a l
f o n d o d e l
1
1
1
-
1
0 . 5
1
0 . 7
0 . 5
1 . 2
0 . 6
0 . 4
0 . 7
0 . 7
0 . 5
0 . 3
0 . 4
0 . 5
0 . 3
0 . 5
0 . 4
0 . 4
0 . 4
0 . 3
0 . 6
0 . 2
1
1
1
1 + 1
1
1
0 . 5
)
0 . 5
( s u 1
0 . 5
1 . 0
( s u 2 r ip ia n i)
1 . 5
0 . 5
1
1
1
1
1
1
1
1
1
1
n . ° 4
1 . 0
1 . 5
1 . 0
1 . 5
1 . 5
1 . 5
1 . 5
1 . 5
-
T e m p o d i
p r e r is c a ld a m e n t o
( m in . )
f o r n o
3
1 5
3
1 5
3
1 5
3
1 5
3
1 5
3
1 5
2 / 3
1 5
3
1 5
3
1 5
2 - 4
1 5
2 - 4
1 5
2 - 4
1 5
1 - 3 - 5
1 5
1 - 3 - 5
1 5
1 - 3 - 5
1 5
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2 - 4
1 5
3
1 0
2
1 0
2 - 4
1 5
2
1 0
2
1 0
2 - 4
1 0
2 - 4
1 0
2
1 0
2 - 4
1 0
3
1 5
3
1 5
2
1 0
2 / 3
1 0
4
5
4
5
4
5
3 / 4
5
4
5
4
5
4
5
4
5
4
5
-
5
-
5
-
5
2
5
2
5
-
5
-
5
-
5
2
5
8
Im p o s t a z i o n e
D u r a t a
t e r m o s t a t o
d e ll a
c o t t u r a
( m in . )
2 0 0
6 5 - 7 5
2 0 0
7 0 - 7 5
2 0 0
7 0 - 8 0
1 8 0
1 5 - 2 0
1 8 0
3 0 - 3 5
1 8 0
2 0 - 3 0
1 8 0
4 0 - 4 5
1 8 0
4 0 - 5 0
1 6 0
2 5 - 3 0
2 0 0
3 0 - 3 5
1 9 0
2 0 - 2 5
2 1 0
1 5 - 2 0
1 8 0
2 0 - 2 5
1 8 0
2 0 - 2 5
9 0
1 8 0
M a x
1 2
2 0 0
2 0
2 2 0
3 0 - 3 5
2 0 0
2 5
2 0 0
3 5
1 8 0
2 5 - 3 0
2 2 0
1 5 - 2 0
2 0 0
2 0 - 2 5
2 0 0
1 5 - 1 8
1 8 0
4 5
2 1 0
1 0 - 1 2
2 3 0
1 5 - 2 0
1 8 0
3 0 - 3 5
1 8 0
4 0 - 4 5
2 0 0
6 0 - 7 0
1 8 0
3 0 - 3 5
1 7 0
4 0 - 5 0
1 9 0
2 0 - 2 5
1 8 0
1 0 - 1 5
1 7 0
1 5 - 2 0
1 7 0
2 0 - 2 5
2 0 0
2 5 - 3 0
2 2 0
1 5 - 2 0
2 2 0
2 5 - 3 0
1 8 0
6 0 - 7 0
M a x
8 - 1 0
M a x
6 - 8
M a x
1 0
M a x
1 0 - 1 5
M a x
1 5 - 2 0
M a x
1 5 - 2 0
M a x
7 - 1 0
M a x
1 5 - 2 0
M a x
2 - 3
M a x
8 0 - 9 0
M a x
7 0 - 8 0
M a x
7 0 - 8 0
2 0 0
5 5 - 6 0
2 0 0
3 0 - 3 5
2 0 0
7 0 - 8 0
2 0 0
7 0 - 8 0
2 0 0
7 0 - 7 5
2 0 0
7 0 - 7 5