3. EGKATASTASH THS ESWTERIKHS MONADAS
HMICWNEUTH MONADA OROFHS 4 DIODWN.
3-1. ANARTHSH
MONADAS
H mona v d a auth v crhsimopoiei v mi v a antli v a ekroh v " th"
sumpuv k nwsh". Crhsimopoieiv s te ev n a alfav d i gia na elev g xete
eav n h monav d a eiv n ai se epiv p edh qev s h.
3-2. PROETOIMASIA GIA THN ANARTHSH
(1)
Sterew v s te tou" sfigkth v r e" ana v r thsh" sthn orofh v me
ton trov p o pou upodeiknuv e tai sta scev d ia (Eik. 3 -1 É
3 -2 É 3 -3), sundev o ntav " ta sth bav s h sthv r ixh" th"
orofh v " h v me e v n an opoiodh v p ote a v l lo tro v p o pou qa
exasfaliv z ei thn asfalhv anav r thsh th" monav d a"
(2)
Gia na truph v s ete thn orofh v akolouqh v s te ti"
endeiv x ei" sthn Eik. 3 -2 kai ston piv n aka 3 -1.
PINAKAS 3-1
Mev g eqo"
A
250
820
360, 480
1110
A (Diastav s ei" ophv " sthn orofhv )
B (Diaxov n io sfigkthv r wn anav r thsh")
Kibwv t io hlektrikwv n exarthmav t wn
Fig. 3-2
3-3. TOPOQETHSH THS MONADAS SE YEUDOROFH
(1)
VOtan h monav d a prev p ei na topoqethqeiv sto eswterikov th"
yeudorofh v " kaqori v s te ta diaxo v n ia metaxu v twn sfigkth v r wn
ana v r thsh" crhsimopoiw v n ta" ton odhgo v efarmogh v " ski v t swn
pou promhqeuv e tai me to klimatistikov (Eik. 3 -4).
VOtan h monada anartav t ai oi swlhv n e" prev p ei na
topoqethqouv n kai na sundeqouv n sto eswterikov th"
yeudorofh v " . Ea v n h yeudorofh v ei v n ai h v d h kataskeuasme v n h,
prin topoqeth v s ete th mona v d a akoumph v s te tou" swlh v n e"
sthn katallhlov t erh qev s h gia th suv n desh.
(2)
To mh v k o" twn sfigkth v r wn pre v p ei na ei v n ai te v t oio w v s te
ana v m esa sto pio baqu v shmei v o th" mona v d a" kai tou"
sfigkthv r e" h apov s tash na mhn eiv n ai mikrov t erh twn 60 clst.,
ov p w" faiv n etai sthn Eik. 3 -4.
(3)
Bidw v s te te v s sera paxima v d ia me ti" scetike v " rode v l e" (den
promhqeuv o ntai me th monav d a) se kaqev n a apov tou"
sfigkth v r e" ana v r thsh" o v p w" fai v n etai sthn Eik. 3 -5.
Staqeropoihv s te tou" sfigkthv r e" anav r thsh" sto tzinev t i
sth v r ixh" th" mona v d a" mploka v r wnta" ta du v o set paxima v d ia
kai ti" rodev l le", ev n a epav n w kai ev n a kav t w apov to tzinev t i.
(4)
Bgav l te to cartov n i mplokariv s mato" pou crhsimopoieiv t ai
gia prostasiv a katav th metaforav apov ton anemisthv r a th"
monav d a".
(5)
Ruqmiv s te thn apov s tash metaxuv th" monav d a" kai th"
yeudorofhv " (48 clst.) mev s w twn mpoulwniwv n twn
sfigkth v r wn crhsimopoiw v n ta" w" me v t ro to diacwristiko v
pou promhqeuv e tai Eik. 3 -4.
THS
ESWTERIKHS
Diastav s ei" se clst.
B
730
1020
Sundethv r e"
swlhv n wn
yuktikouv
Sundev s ei"
ekrohv "
sumpuv k nwsh"
Diastav s ei" se clst.
3)
Kaqori v s te to diaxo v n io twn sfigkth v r wn ana v r thsh" me
ton odhgov efarmoghv " skiv t swn pou promhqeuv e tai me
th monav d a. O odhgov " efarmoghv " skiv t swn, o piv n aka"
3 -2 kai h eiko v n a 3 -3 dei v c noun th qe v s h twn
sfigkthv r wn anav r thsh" th" cwneuthv " monav d a" kai
tou emfanouv " piv n aka.
Ouv p a
Eik . 3-1
Sfigkthv r e" anav r thsh" (M10 den
promhqeuv o ntai)
PINAKAS 3-2
Mev g eqo"
A
250
150
360, 480
165
Su v n desh swlh v n yuktikou v ugrou v (mikro v " swlh v n a")
Suv n desh swlhv n a yuktikouv ugrouv (mikrov " swlhv n a")
Tzinev t i sthv r ixh"
Div o do" kalwdiv o u trofodosiv a "
Fig. 3-3
Odhgov " efarmoghv " skiv t swn sfigkthv r wn
Paximav d i kai
rodev l la (2 set)
Eik. 3-5
8
Diacwristikov parev m blhma
Plakiv d io
Diastav s ei" se clst.
B
C
D
E
200
255
298
125
235
285
328
125
VElegco" apostrav g gish"
(promhqeuv e tai)
Eik. 3-4
Sfigkthv r a" anav r thsh"
Tzinev t i sthv r ixh"
Epav n w
Kav t w
GR